These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32561744)

  • 1. Capturing transient antibody conformations with DNA origami epitopes.
    Zhang P; Liu X; Liu P; Wang F; Ariyama H; Ando T; Lin J; Wang L; Hu J; Li B; Fan C
    Nat Commun; 2020 Jun; 11(1):3114. PubMed ID: 32561744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM-based single-molecule observation of the conformational changes of DNA structures.
    Endo M
    Methods; 2019 Oct; 169():3-10. PubMed ID: 30978504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific antigen/antibody interactions measured by force microscopy.
    Dammer U; Hegner M; Anselmetti D; Wagner P; Dreier M; Huber W; Güntherodt HJ
    Biophys J; 1996 May; 70(5):2437-41. PubMed ID: 9172770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp.
    Nickels PC; Wünsch B; Holzmeister P; Bae W; Kneer LM; Grohmann D; Tinnefeld P; Liedl T
    Science; 2016 Oct; 354(6310):305-307. PubMed ID: 27846560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2018; 1814():213-224. PubMed ID: 29956235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography.
    Lei D; Marras AE; Liu J; Huang CM; Zhou L; Castro CE; Su HJ; Ren G
    Nat Commun; 2018 Feb; 9(1):592. PubMed ID: 29426880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.
    Roth E; Glick Azaria A; Girshevitz O; Bitler A; Garini Y
    Nano Lett; 2018 Nov; 18(11):6703-6709. PubMed ID: 30352164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Assessment of Tip Effects in Single-Molecule High-Speed Atomic Force Microscopy Using DNA Origami Substrates.
    Kielar C; Zhu S; Grundmeier G; Keller A
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14336-14341. PubMed ID: 32485088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating specific antigen/antibody binding with the atomic force microscope.
    Ouerghi O; Touhami A; Othmane A; Ouada HB; Martelet C; Fretigny C; Jaffrezic-Renault N
    Biomol Eng; 2002 Aug; 19(2-6):183-8. PubMed ID: 12202180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Imaging of Enzymatic Reactions on DNA Origami.
    Yan A; Sun L; Li D
    Methods Mol Biol; 2023; 2639():131-145. PubMed ID: 37166715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors.
    Willner EM; Kamada Y; Suzuki Y; Emura T; Hidaka K; Dietz H; Sugiyama H; Endo M
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15324-15328. PubMed ID: 29044955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time monitoring of protein-induced DNA conformational changes using single-molecule FRET.
    Schärfen L; Schlierf M
    Methods; 2019 Oct; 169():11-20. PubMed ID: 30776405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise structure control of three-state nanomechanical DNA origami devices.
    Kuzuya A; Watanabe R; Hashizume M; Kaino M; Minamida S; Kameda K; Ohya Y
    Methods; 2014 May; 67(2):250-5. PubMed ID: 24270064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of Epitope-Specific Mechanisms of Neutralization of Influenza Virus by Intact IgG and Fab Fragments.
    Williams JA; Gui L; Hom N; Mileant A; Lee KK
    J Virol; 2018 Mar; 92(6):. PubMed ID: 29263254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy landscapes of fast-folding proteins pushing the limits of atomic force microscope (AFM) pulling.
    Sengupta A; Rief M
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33893176
    [No Abstract]   [Full Text] [Related]  

  • 17. Biological cryo atomic force microscopy: a brief review.
    Shao Z; Zhang Y
    Ultramicroscopy; 1996 Dec; 66(3-4):141-52. PubMed ID: 9195750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IgGs are made for walking on bacterial and viral surfaces.
    Preiner J; Kodera N; Tang J; Ebner A; Brameshuber M; Blaas D; Gelbmann N; Gruber HJ; Ando T; Hinterdorfer P
    Nat Commun; 2014 Jul; 5():4394. PubMed ID: 25008037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule DREEM imaging reveals DNA wrapping around human mitochondrial single-stranded DNA binding protein.
    Kaur P; Longley MJ; Pan H; Wang H; Copeland WC
    Nucleic Acids Res; 2018 Nov; 46(21):11287-11302. PubMed ID: 30256971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.