These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32561750)

  • 1. CODC: a Copula-based model to identify differential coexpression.
    Ray S; Lall S; Bandyopadhyay S
    NPJ Syst Biol Appl; 2020 Jun; 6(1):20. PubMed ID: 32561750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying differentially coexpressed module during HIV disease progression: A multiobjective approach.
    Ray S; Maulik U
    Sci Rep; 2017 Mar; 7(1):86. PubMed ID: 28273892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules.
    Tesson BM; Breitling R; Jansen RC
    BMC Bioinformatics; 2010 Oct; 11():497. PubMed ID: 20925918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biologically inspired measure for coexpression analysis.
    Bandyopadhyay S; Bhattacharyya M
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):929-42. PubMed ID: 21566252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Coexpression Network Analysis for Gene Expression Data.
    Liu BH
    Methods Mol Biol; 2018; 1754():155-165. PubMed ID: 29536442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction.
    Wang J; Ma Z; Carr SA; Mertins P; Zhang H; Zhang Z; Chan DW; Ellis MJ; Townsend RR; Smith RD; McDermott JE; Chen X; Paulovich AG; Boja ES; Mesri M; Kinsinger CR; Rodriguez H; Rodland KD; Liebler DC; Zhang B
    Mol Cell Proteomics; 2017 Jan; 16(1):121-134. PubMed ID: 27836980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Link-based quantitative methods to identify differentially coexpressed genes and gene pairs.
    Yu H; Liu BH; Ye ZQ; Li C; Li YX; Li YY
    BMC Bioinformatics; 2011 Aug; 12():315. PubMed ID: 21806838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression.
    Mo WJ; Fu XP; Han XT; Yang GY; Zhang JG; Guo FH; Huang Y; Mao YM; Li Y; Xie Y
    BMC Genomics; 2009 Jul; 10():340. PubMed ID: 19640296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Module Based Differential Coexpression Analysis Method for Type 2 Diabetes.
    Yuan L; Zheng CH; Xia JF; Huang DS
    Biomed Res Int; 2015; 2015():836929. PubMed ID: 26339648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing RNA-Seq data for de novo coexpression network inference.
    Iancu OD; Kawane S; Bottomly D; Searles R; Hitzemann R; McWeeney S
    Bioinformatics; 2012 Jun; 28(12):1592-7. PubMed ID: 22556371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subspace differential coexpression analysis: problem definition and a general approach.
    Fang G; Kuang R; Pandey G; Steinbach M; Myers CL; Kumar V
    Pac Symp Biocomput; 2010; ():145-56. PubMed ID: 19908367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stratification of gene coexpression patterns and GO function mining for a RNA-Seq data series.
    Zhao H; Cao F; Gong Y; Xu H; Fei Y; Wu L; Ye X; Yang D; Liu X; Li X; Zhou J
    Biomed Res Int; 2014; 2014():969768. PubMed ID: 24955372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of regulatory networks that are altered in disease via differential co-expression.
    Amar D; Safer H; Shamir R
    PLoS Comput Biol; 2013; 9(3):e1002955. PubMed ID: 23505361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of gene coexpression network modules in breast cancer and ovarian cancer.
    Zhang S
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):8. PubMed ID: 29671401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics analysis of RNA-seq data revealed critical genes in colon adenocarcinoma.
    Xi WD; Liu YJ; Sun XB; Shan J; Yi L; Zhang TT
    Eur Rev Med Pharmacol Sci; 2017 Jul; 21(13):3012-3020. PubMed ID: 28742206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology for the analysis of differential coexpression across the human lifespan.
    Gillis J; Pavlidis P
    BMC Bioinformatics; 2009 Sep; 10():306. PubMed ID: 19772654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weighted Gene Coexpression Network Analysis Identifies Cysteine-Rich Intestinal Protein 1 (CRIP1) as a Prognostic Gene Associated with Relapse in Patients with Acute Myeloid Leukemia.
    Ye C; Ma S; Xia B; Zheng C
    Med Sci Monit; 2019 Oct; 25():7396-7406. PubMed ID: 31577790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential coexpression analysis using microarray data and its application to human cancer.
    Choi JK; Yu U; Yoo OJ; Kim S
    Bioinformatics; 2005 Dec; 21(24):4348-55. PubMed ID: 16234317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying set-wise differential co-expression in gene expression microarray data.
    Cho SB; Kim J; Kim JH
    BMC Bioinformatics; 2009 Apr; 10():109. PubMed ID: 19371436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Differentially Coexpressed Genes from Labeled Expression Data: A Brief Review.
    Kayano M; Shiga M; Mamitsuka H
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):154-67. PubMed ID: 26355515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.