These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32562176)

  • 1. Biotic stress triggered small RNA and RNAi defense response in plants.
    Ali M; Javaid A; Naqvi SH; Batcho A; Kayani WK; Lal A; Sajid IA; Nwogwugwu JO
    Mol Biol Rep; 2020 Jul; 47(7):5511-5522. PubMed ID: 32562176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding.
    Younis A; Siddique MI; Kim CK; Lim KB
    Int J Biol Sci; 2014; 10(10):1150-8. PubMed ID: 25332689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits.
    Das Laha S; Kundu A; Podder S
    Planta; 2024 Mar; 259(5):97. PubMed ID: 38520529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of microRNAs in biotic and abiotic stress responses in crop plants.
    Kumar R
    Appl Biochem Biotechnol; 2014 Sep; 174(1):93-115. PubMed ID: 24869742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of microRNAs and other endogenous small RNAs in plant stress responses.
    Shukla LI; Chinnusamy V; Sunkar R
    Biochim Biophys Acta; 2008 Nov; 1779(11):743-8. PubMed ID: 18457682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses.
    Bharathi JK; Anandan R; Benjamin LK; Muneer S; Prakash MAS
    Plant Physiol Biochem; 2023 Jan; 194():600-618. PubMed ID: 36529010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNAi Mediated Hypoxia Stress Tolerance in Plants.
    Betti F; Ladera-Carmona MJ; Perata P; Loreti E
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33321742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA interference and crop protection against biotic stresses.
    Kaur R; Choudhury A; Chauhan S; Ghosh A; Tiwari R; Rajam MV
    Physiol Mol Biol Plants; 2021 Oct; 27(10):2357-2377. PubMed ID: 34744371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functions of plant small RNAs in development and in stress responses.
    Li S; Castillo-González C; Yu B; Zhang X
    Plant J; 2017 May; 90(4):654-670. PubMed ID: 27943457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of small RNA-mediated high temperature stress responses in crop plants.
    Singh RK; Prasad A; Maurya J; Prasad M
    Plant Cell Rep; 2022 Mar; 41(3):765-773. PubMed ID: 34228188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotic stress-associated microRNA families in plants.
    Šečić E; Kogel KH; Ladera-Carmona MJ
    J Plant Physiol; 2021 Aug; 263():153451. PubMed ID: 34119743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops.
    Li T; Wang YH; Liu JX; Feng K; Xu ZS; Xiong AS
    Crit Rev Biotechnol; 2019 Aug; 39(5):680-692. PubMed ID: 31068014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of microRNAs and other sRNAs of plants in their changing environments.
    Kruszka K; Pieczynski M; Windels D; Bielewicz D; Jarmolowski A; Szweykowska-Kulinska Z; Vazquez F
    J Plant Physiol; 2012 Nov; 169(16):1664-72. PubMed ID: 22647959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring miRNAs for developing climate-resilient crops: A perspective review.
    Xu J; Hou QM; Khare T; Verma SK; Kumar V
    Sci Total Environ; 2019 Feb; 653():91-104. PubMed ID: 30408672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance.
    Kumar V; Khare T; Shriram V; Wani SH
    Plant Cell Rep; 2018 Jan; 37(1):61-75. PubMed ID: 28951953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of RNA interference in plant improvement.
    Jagtap UB; Gurav RG; Bapat VA
    Naturwissenschaften; 2011 Jun; 98(6):473-92. PubMed ID: 21503773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of low temperature stress in plants by microRNAs.
    Megha S; Basu U; Kav NNV
    Plant Cell Environ; 2018 Jan; 41(1):1-15. PubMed ID: 28346818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA interference: concept to reality in crop improvement.
    Saurabh S; Vidyarthi AS; Prasad D
    Planta; 2014 Mar; 239(3):543-64. PubMed ID: 24402564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon.
    Sanz-Carbonell A; Marques MC; Bustamante A; Fares MA; Rodrigo G; Gomez G
    BMC Plant Biol; 2019 Feb; 19(1):78. PubMed ID: 30777009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.