These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32562654)

  • 1. Formulation aspects of intravenous nanosuspensions.
    Patel D; Zode SS; Bansal AK
    Int J Pharm; 2020 Aug; 586():119555. PubMed ID: 32562654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies.
    Du J; Li X; Zhao H; Zhou Y; Wang L; Tian S; Wang Y
    Int J Pharm; 2015 Nov; 495(2):738-49. PubMed ID: 26383838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosuspensions of poorly water soluble drugs prepared by top-down technologies.
    Zhang X; Li LC; Mao S
    Curr Pharm Des; 2014; 20(3):388-407. PubMed ID: 23651400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects.
    Wong J; Brugger A; Khare A; Chaubal M; Papadopoulos P; Rabinow B; Kipp J; Ning J
    Adv Drug Deliv Rev; 2008 May; 60(8):939-54. PubMed ID: 18343527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nanosuspension formulations on transport, pharmacokinetics, in vivo targeting and efficacy for poorly water-soluble drugs.
    Wang Y; Miao X; Sun L; Song J; Bi C; Yang X; Zheng Y
    Curr Pharm Des; 2014; 20(3):454-73. PubMed ID: 23651402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of nanosuspensions as a tool to improve drug bioavailability: focus on topical delivery.
    Lai F; Schlich M; Pireddu R; Corrias F; Fadda AM; Sinico C
    Curr Pharm Des; 2015; 21(42):6089-103. PubMed ID: 26503149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a screening platform for the formulation of poorly water-soluble drugs as albumin-stabilized nanosuspensions using nab™ technology.
    Adick A; Hoheisel W; Schneid S; Hester S; Langer K
    Int J Pharm; 2024 Sep; 662():124491. PubMed ID: 39032872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of nanosuspensions in drug delivery.
    Wang Y; Zheng Y; Zhang L; Wang Q; Zhang D
    J Control Release; 2013 Dec; 172(3):1126-41. PubMed ID: 23954372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosuspensions in drug delivery: recent advances, patent scenarios, and commercialization aspects.
    Chavhan SS; Petkar KC; Sawant KK
    Crit Rev Ther Drug Carrier Syst; 2011; 28(5):447-88. PubMed ID: 22077201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmaceutical nanocrystals: production by wet milling and applications.
    Malamatari M; Taylor KMG; Malamataris S; Douroumis D; Kachrimanis K
    Drug Discov Today; 2018 Mar; 23(3):534-547. PubMed ID: 29326082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products.
    Van Eerdenbrugh B; Van den Mooter G; Augustijns P
    Int J Pharm; 2008 Nov; 364(1):64-75. PubMed ID: 18721869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug delivery strategies for poorly water-soluble drugs.
    Fahr A; Liu X
    Expert Opin Drug Deliv; 2007 Jul; 4(4):403-16. PubMed ID: 17683253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro-in vivo evaluation of nanosuspension release from subcutaneously implantable osmotic pumps.
    Hill A; Geissler S; Meyring M; Hecht S; Weigandt M; Mäder K
    Int J Pharm; 2013 Jul; 451(1-2):57-66. PubMed ID: 23628403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosuspension-Based Drug Delivery Systems for Topical Applications.
    Aldeeb MME; Wilar G; Suhandi C; Elamin KM; Wathoni N
    Int J Nanomedicine; 2024; 19():825-844. PubMed ID: 38293608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical method for preparing nanosuspension formulations for toxicology studies in the discovery stage: formulation optimization and in vitro/in vivo evaluation of nanosized poorly water-soluble compounds.
    Komasaka T; Fujimura H; Tagawa T; Sugiyama A; Kitano Y
    Chem Pharm Bull (Tokyo); 2014; 62(11):1073-82. PubMed ID: 25366311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate.
    Ma Y; Cong Z; Gao P; Wang Y
    Eur J Pharm Sci; 2023 Jun; 185():106425. PubMed ID: 36934992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review.
    Kumar S; Bhargava D; Thakkar A; Arora S
    Crit Rev Ther Drug Carrier Syst; 2013; 30(3):217-56. PubMed ID: 23614647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations.
    Leone F; Cavalli R
    Expert Opin Drug Deliv; 2015; 12(10):1607-25. PubMed ID: 25960000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosuspensions: a promising drug delivery strategy.
    Patravale VB; Date AA; Kulkarni RM
    J Pharm Pharmacol; 2004 Jul; 56(7):827-40. PubMed ID: 15233860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanosuspension Technology: Recent Patents on Drug Delivery and their Characterizations.
    Goel S; Sachdeva M; Agarwal V
    Recent Pat Drug Deliv Formul; 2019; 13(2):91-104. PubMed ID: 31203813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.