These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32562913)
1. Increased susceptibility of SARS-CoV2 infection on oral cancer patients; cause and effects: An hypothesis. Chauhan A; Ghoshal S; Pal A Med Hypotheses; 2020 Nov; 144():109987. PubMed ID: 32562913 [TBL] [Abstract][Full Text] [Related]
2. Existence of SARS-CoV-2 Entry Molecules in the Oral Cavity. Sakaguchi W; Kubota N; Shimizu T; Saruta J; Fuchida S; Kawata A; Yamamoto Y; Sugimoto M; Yakeishi M; Tsukinoki K Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825469 [TBL] [Abstract][Full Text] [Related]
3. Cytoplasmic short linear motifs in ACE2 and integrin β Kliche J; Kuss H; Ali M; Ivarsson Y Sci Signal; 2021 Jan; 14(665):. PubMed ID: 33436498 [TBL] [Abstract][Full Text] [Related]
4. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Wei C; Wan L; Yan Q; Wang X; Zhang J; Yang X; Zhang Y; Fan C; Li D; Deng Y; Sun J; Gong J; Yang X; Wang Y; Wang X; Li J; Yang H; Li H; Zhang Z; Wang R; Du P; Zong Y; Yin F; Zhang W; Wang N; Peng Y; Lin H; Feng J; Qin C; Chen W; Gao Q; Zhang R; Cao Y; Zhong H Nat Metab; 2020 Dec; 2(12):1391-1400. PubMed ID: 33244168 [TBL] [Abstract][Full Text] [Related]
5. In well-differentiated primary human bronchial epithelial cells, TGF- O'Sullivan MJ; Mitchel JA; Mwase C; McGill M; Kanki P; Park JA Am J Physiol Lung Cell Mol Physiol; 2021 Feb; 320(2):L246-L253. PubMed ID: 33174447 [TBL] [Abstract][Full Text] [Related]
6. Expression profile of SARS-CoV-2 cellular entry proteins in normal oral mucosa and oral squamous cell carcinoma. Sapkota D; Sharma S; Søland TM; Braz-Silva PH; Teh MT Clin Exp Dent Res; 2022 Feb; 8(1):117-122. PubMed ID: 34726347 [TBL] [Abstract][Full Text] [Related]
7. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2. Verkhivker G Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158276 [TBL] [Abstract][Full Text] [Related]
8. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. Choudhury A; Mukherjee S J Med Virol; 2020 Oct; 92(10):2105-2113. PubMed ID: 32383269 [TBL] [Abstract][Full Text] [Related]
9. Is highly expressed ACE 2 in pregnant women "a curse" in times of COVID-19 pandemic? Dhaundiyal A; Kumari P; Jawalekar SS; Chauhan G; Kalra S; Navik U Life Sci; 2021 Jan; 264():118676. PubMed ID: 33129880 [TBL] [Abstract][Full Text] [Related]
10. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Scialo F; Daniele A; Amato F; Pastore L; Matera MG; Cazzola M; Castaldo G; Bianco A Lung; 2020 Dec; 198(6):867-877. PubMed ID: 33170317 [TBL] [Abstract][Full Text] [Related]
11. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. Mittal A; Manjunath K; Ranjan RK; Kaushik S; Kumar S; Verma V PLoS Pathog; 2020 Aug; 16(8):e1008762. PubMed ID: 32822426 [TBL] [Abstract][Full Text] [Related]
12. Can COVID-19 induce glioma tumorogenesis through binding cell receptors? Khan I; Hatiboglu MA Med Hypotheses; 2020 Nov; 144():110009. PubMed ID: 32758869 [TBL] [Abstract][Full Text] [Related]
13. Blood clots in COVID-19 patients: Simplifying the curious mystery. Biswas S; Thakur V; Kaur P; Khan A; Kulshrestha S; Kumar P Med Hypotheses; 2021 Jan; 146():110371. PubMed ID: 33223324 [TBL] [Abstract][Full Text] [Related]
14. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018 [TBL] [Abstract][Full Text] [Related]
15. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194 [TBL] [Abstract][Full Text] [Related]
16. Assessing COVID-19 susceptibility through analysis of the genetic and epigenetic diversity of ACE2-mediated SARS-CoV-2 entry. Ragia G; Manolopoulos VG Pharmacogenomics; 2020 Dec; 21(18):1311-1329. PubMed ID: 33243086 [TBL] [Abstract][Full Text] [Related]
17. Potential interactions of SARS-CoV-2 with human cell receptors in the skin: Understanding the enigma for a lower frequency of skin lesions compared to other tissues. Ricardo Criado P; Pincelli TPH; Criado RFJ; Abdalla BMZ; Belda Junior W Exp Dermatol; 2020 Oct; 29(10):936-944. PubMed ID: 32867008 [TBL] [Abstract][Full Text] [Related]
18. Highly conserved binding region of ACE2 as a receptor for SARS-CoV-2 between humans and mammals. Hayashi T; Abiko K; Mandai M; Yaegashi N; Konishi I Vet Q; 2020 Dec; 40(1):243-249. PubMed ID: 32921279 [TBL] [Abstract][Full Text] [Related]
19. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Basu A; Sarkar A; Maulik U Sci Rep; 2020 Oct; 10(1):17699. PubMed ID: 33077836 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the genetic variation in ACE2 on the structural recognition by the novel coronavirus (SARS-CoV-2). Guo X; Chen Z; Xia Y; Lin W; Li H J Transl Med; 2020 Aug; 18(1):321. PubMed ID: 32831104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]