These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32562961)

  • 41. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.
    Mao Y; Guo D; Yao W; Wang X; Yang H; Xie YF; Komarneni S; Yu G; Wang Y
    Water Res; 2018 Mar; 130():322-332. PubMed ID: 29247948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural fluorescence emission - an indirect measurement of applied ozone dosages to remove pharmaceuticals in biologically treated wastewater.
    Spiliotopoulou A; Antoniou MG; Andersen HR
    Environ Technol; 2021 Jan; 42(4):584-596. PubMed ID: 31345121
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A drinking water utility's perspective on bromide, bromate, and ozonation.
    Bonacquisti TP
    Toxicology; 2006 Apr; 221(2-3):145-8. PubMed ID: 16545515
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robust evaluation of performance monitoring options for ozone disinfection in water recycling using Bayesian analysis.
    Carvajal G; Branch A; Michel P; Sisson SA; Roser DJ; Drewes JE; Khan SJ
    Water Res; 2017 Nov; 124():605-617. PubMed ID: 28820991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of effluent particles and particle-bound micropollutants on the removal of micropollutants and UVA
    Qian J; Atallah Al-Asad H; Parniske J; Brandl A; Degenhardt M; Morck T
    Ecotoxicol Environ Saf; 2024 Jan; 270():115915. PubMed ID: 38194809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The removal of estrogenic activity and control of brominated by-products during ozonation of secondary effluents.
    Kim HS; Yamada H; Tsuno H
    Water Res; 2007 Apr; 41(7):1441-6. PubMed ID: 17316744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unexpected trends for the formation of chlorate and bromate during the photolysis of chlorine in bromide-containing water.
    Zhang Y; Hua Z; Zhang X; Guo K; Fang J
    Water Res; 2023 Jul; 240():120100. PubMed ID: 37247439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Implications of hydrogen peroxide on bromate depression during seawater ozonation.
    Yu Y; Zhao Y; Wang H; Tao P; Zhang X; Shao M; Sun T
    Chemosphere; 2021 Oct; 280():130669. PubMed ID: 33940451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment.
    Johnson CJ; Singer PC
    Water Res; 2004 Oct; 38(17):3738-50. PubMed ID: 15350426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial reduction of bromate: current status and prospects.
    Lv X; Wang D; Iqbal W; Yang B; Mao Y
    Biodegradation; 2019 Dec; 30(5-6):365-374. PubMed ID: 31236769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimizing Ozone Disinfection in Water Reuse: Controlling Bromate Formation and Enhancing Trace Organic Contaminant Oxidation.
    Hogard S; Pearce R; Gonzalez R; Yetka K; Bott C
    Environ Sci Technol; 2023 Nov; 57(47):18499-18508. PubMed ID: 37467303
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of magnetic ion exchange and ozonation on disinfection by-product formation.
    Kingsbury RS; Singer PC
    Water Res; 2013 Mar; 47(3):1060-72. PubMed ID: 23286989
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of online UV absorption measurements for ozone process control in secondary effluent with variable nitrite concentration.
    Stapf M; Miehe U; Jekel M
    Water Res; 2016 Nov; 104():111-118. PubMed ID: 27522021
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of ozonation and peroxone process for simultaneous control of micropollutants and bromate in wastewater.
    Phattarapattamawong S; Kaiser AM; Saracevic E; Schaar HP; Krampe J
    Water Sci Technol; 2018 May; 2017(2):404-411. PubMed ID: 29851392
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.
    Song Y; Breider F; Ma J; von Gunten U
    Water Res; 2017 Oct; 122():246-257. PubMed ID: 28623834
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water.
    Huang X; Gao N; Deng Y
    J Environ Sci (China); 2008; 20(2):246-51. PubMed ID: 18574968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation.
    Acero JL; Haderlein SB; Schmidt TC; Suter MJ; von Gunten U
    Environ Sci Technol; 2001 Nov; 35(21):4252-9. PubMed ID: 11718338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ozone combined with ceramic membranes for water treatment: Impact on HO radical formation and mitigation of bromate.
    Ibn Abdul Hamid K; Scales PJ; Allard S; Croue JP; Muthukumaran S; Duke M
    J Environ Manage; 2020 Jan; 253():109655. PubMed ID: 31654925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Influence factors of bromate formation in Yangtze River water during ozonation process].
    Lu N; Gao NY; Huang X
    Huan Jing Ke Xue; 2009 May; 30(5):1386-90. PubMed ID: 19558106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A New Reaction Pathway for Bromite to Bromate in the Ozonation of Bromide.
    Fischbacher A; Löppenberg K; von Sonntag C; Schmidt TC
    Environ Sci Technol; 2015 Oct; 49(19):11714-20. PubMed ID: 26371826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.