These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32562961)

  • 61. Benefits of ozonation before activated carbon adsorption for the removal of organic micropollutants from wastewater effluents.
    Guillossou R; Le Roux J; Brosillon S; Mailler R; Vulliet E; Morlay C; Nauleau F; Rocher V; Gaspéri J
    Chemosphere; 2020 Apr; 245():125530. PubMed ID: 31881388
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation.
    Sgroi M; Snyder SA; Roccaro P
    Chemosphere; 2021 Jun; 273():128527. PubMed ID: 33268086
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection.
    Zimmermann SG; Wittenwiler M; Hollender J; Krauss M; Ort C; Siegrist H; von Gunten U
    Water Res; 2011 Jan; 45(2):605-17. PubMed ID: 20828780
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Advances in Treatment of Brominated Hydrocarbons by Heterogeneous Catalytic Ozonation and Bromate Minimization.
    Gounden AN; Jonnalagadda SB
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31547554
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent.
    Phan LT; Schaar H; Saracevic E; Krampe J; Kreuzinger N
    Sci Total Environ; 2022 Mar; 812():152466. PubMed ID: 34952079
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Application of UV absorbance and electron-donating capacity as surrogates for micropollutant abatement during full-scale ozonation of secondary-treated wastewater.
    Walpen N; Joss A; von Gunten U
    Water Res; 2022 Feb; 209():117858. PubMed ID: 34864343
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficacy of ozone for removal of pesticides, metals and indicator virus from reverse osmosis concentrates generated during potable reuse of municipal wastewaters.
    King JF; Szczuka A; Zhang Z; Mitch WA
    Water Res; 2020 Jun; 176():115744. PubMed ID: 32251944
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Toxicity of Wastewater with Elevated Bromide and Iodide after Chlorination, Chloramination, or Ozonation Disinfection.
    Dong S; Masalha N; Plewa MJ; Nguyen TH
    Environ Sci Technol; 2017 Aug; 51(16):9297-9304. PubMed ID: 28691804
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bromate analysis in groundwater and wastewater samples.
    Butler R; Lytton L; Godley AR; Tothill IE; Cartmell E
    J Environ Monit; 2005 Oct; 7(10):999-1006. PubMed ID: 16193172
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ozonation parameter for removal of oestrogenicity from secondary effluent without by-products.
    Kim SE; Yamada H; Tsuno H
    Water Sci Technol; 2007; 55(1-2):233-40. PubMed ID: 17305145
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Unveiling the transformation of dissolved organic matter during ozonation of municipal secondary effluent based on FT-ICR-MS and spectral analysis.
    Zhang B; Shan C; Wang S; Fang Z; Pan B
    Water Res; 2021 Jan; 188():116484. PubMed ID: 33045637
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.
    Lee Y; Gerrity D; Lee M; Gamage S; Pisarenko A; Trenholm RA; Canonica S; Snyder SA; von Gunten U
    Environ Sci Technol; 2016 Apr; 50(7):3809-19. PubMed ID: 26909504
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone.
    Wang Y; Yu J; Zhang D; Yang M
    J Environ Sci (China); 2014 Mar; 26(3):550-4. PubMed ID: 25079267
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of conventionally treated and ozonated wastewater on the damselfly larva oxylipidome in response to on-site exposure.
    Späth J; Brodin T; Falås P; Niinipuu M; Lindberg R; Fick J; Nording M
    Chemosphere; 2022 Dec; 309(Pt 1):136604. PubMed ID: 36179924
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bromide oxidation by ferrate(VI): The formation of active bromine and bromate.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2016 Jun; 96():188-97. PubMed ID: 27050745
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration.
    Hollender J; Zimmermann SG; Koepke S; Krauss M; McArdell CS; Ort C; Singer H; von Gunten U; Siegrist H
    Environ Sci Technol; 2009 Oct; 43(20):7862-9. PubMed ID: 19921906
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ozonation in advanced treatment of secondary municipal wastewater effluents for the removal of micropollutants.
    Dogruel S; Cetinkaya Atesci Z; Aydin E; Pehlivanoglu-Mantas E
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45460-45475. PubMed ID: 32794092
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.
    Liu C; von Gunten U; Croué JP
    Water Res; 2013 Sep; 47(14):5307-15. PubMed ID: 23866145
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Formation of aldehydes and carboxylic acids in ozonated surface water and wastewater: a clear relationship with fluorescence changes.
    Liu C; Tang X; Kim J; Korshin GV
    Chemosphere; 2015 Apr; 125():182-90. PubMed ID: 25576127
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process.
    Yao W; Qu Q; von Gunten U; Chen C; Yu G; Wang Y
    Water Res; 2017 Jan; 108():373-382. PubMed ID: 27839831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.