These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32562980)

  • 21. Physicochemical and toxicological evaluation of silica nanoparticles suitable for food and consumer products collected by following the EC recommendation.
    Contado C; Mejia J; Lozano García O; Piret JP; Dumortier E; Toussaint O; Lucas S
    Anal Bioanal Chem; 2016 Jan; 408(1):271-86. PubMed ID: 26507331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hazard identification of pyrogenic synthetic amorphous silica (NM-203) after sub-chronic oral exposure in rat: A multitarget approach.
    Tassinari R; Di Felice G; Butteroni C; Barletta B; Corinti S; Cubadda F; Aureli F; Raggi A; Narciso L; Tait S; Valeri M; Martinelli A; Di Virgilio A; Pacchierotti F; Cordelli E; Eleuteri P; Villani P; Fessard V; Maranghi F
    Food Chem Toxicol; 2020 Mar; 137():111168. PubMed ID: 32007467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physicochemical properties and in vitro intestinal permeability properties and intestinal cell toxicity of silica particles, performed in simulated gastrointestinal fluids.
    Sakai-Kato K; Hidaka M; Un K; Kawanishi T; Okuda H
    Biochim Biophys Acta; 2014 Mar; 1840(3):1171-80. PubMed ID: 24361607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytotoxic and genotoxic evaluation of different synthetic amorphous silica nanomaterials in the V79 cell line.
    Guichard Y; Fontana C; Chavinier E; Terzetti F; Gaté L; Binet S; Darne C
    Toxicol Ind Health; 2016 Sep; 32(9):1639-50. PubMed ID: 25757481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Comparative Analysis of Different Grades of Silica Particles and Temperature Variants of Food-Grade Silica Nanoparticles for Their Physicochemical Properties and Effect on Trypsin.
    Phue WH; Liu M; Xu K; Srinivasan D; Ismail A; George S
    J Agric Food Chem; 2019 Nov; 67(44):12264-12272. PubMed ID: 31613615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica.
    Dekkers S; Bouwmeester H; Bos PM; Peters RJ; Rietveld AG; Oomen AG
    Nanotoxicology; 2013 Jun; 7(4):367-77. PubMed ID: 22394279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amorphous silica nanoparticles induced spleen and liver toxicity after acute intravenous exposure in male and female rats.
    Tassinari R; Martinelli A; Valeri M; Maranghi F
    Toxicol Ind Health; 2021 Jun; 37(6):328-335. PubMed ID: 33910434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix.
    Heroult J; Nischwitz V; Bartczak D; Goenaga-Infante H
    Anal Bioanal Chem; 2014 Jun; 406(16):3919-27. PubMed ID: 24817355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles.
    Peters RJ; van Bemmel G; Herrera-Rivera Z; Helsper HP; Marvin HJ; Weigel S; Tromp PC; Oomen AG; Rietveld AG; Bouwmeester H
    J Agric Food Chem; 2014 Jul; 62(27):6285-93. PubMed ID: 24933406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-Wide DNA Methylation Alterations and Potential Risk Induced by Subacute and Subchronic Exposure to Food-Grade Nanosilica in Mice.
    Lu X; Li J; Lou H; Cao Z; Fan X
    ACS Nano; 2021 May; 15(5):8225-8243. PubMed ID: 33938728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells.
    Nabeshi H; Yoshikawa T; Matsuyama K; Nakazato Y; Arimori A; Isobe M; Tochigi S; Kondoh S; Hirai T; Akase T; Yamashita T; Yamashita K; Yoshida T; Nagano K; Abe Y; Yoshioka Y; Kamada H; Imazawa T; Itoh N; Tsunoda S; Tsutsumi Y
    Pharmazie; 2010 Mar; 65(3):199-201. PubMed ID: 20383940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size-dependent toxicity of silica nano-particles to Chlorella kessleri.
    Fujiwara K; Suematsu H; Kiyomiya E; Aoki M; Sato M; Moritoki N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Aug; 43(10):1167-73. PubMed ID: 18584432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Experimental study on the acute toxicity of a food additive, Syloid (amorphous silica) administered orally].
    Saruta N; Ishinishi N; Kunitake E; Katori Y
    Igaku Kenkyu; 1969 Jan; 39(1):1-15. PubMed ID: 4306406
    [No Abstract]   [Full Text] [Related]  

  • 34. A Systematic Review on the Hazard Assessment of Amorphous Silica Based on the Literature From 2013 to 2018.
    Krug HF
    Front Public Health; 2022; 10():902893. PubMed ID: 35784253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sub-chronic toxicity study in rats orally exposed to nanostructured silica.
    van der Zande M; Vandebriel RJ; Groot MJ; Kramer E; Herrera Rivera ZE; Rasmussen K; Ossenkoppele JS; Tromp P; Gremmer ER; Peters RJ; Hendriksen PJ; Marvin HJ; Hoogenboom RL; Peijnenburg AA; Bouwmeester H
    Part Fibre Toxicol; 2014 Feb; 11():8. PubMed ID: 24507464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silica nanoparticles induced metabolic stress through EGR1, CCND, and E2F1 genes in human mesenchymal stem cells.
    Periasamy VS; Athinarayanan J; Akbarsha MA; Alshatwi AA
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1181-92. PubMed ID: 25374141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.
    Contado C; Ravani L; Passarella M
    Anal Chim Acta; 2013 Jul; 788():183-92. PubMed ID: 23845499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of nanoscale ingredients in commercial food products and their induction of mitochondrially mediated cytotoxic effects on human mesenchymal stem cells.
    Athinarayanan J; Alshatwi AA; Periasamy VS; Al-Warthan AA
    J Food Sci; 2015 Feb; 80(2):N459-64. PubMed ID: 25586546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells.
    Athinarayanan J; Periasamy VS; Alsaif MA; Al-Warthan AA; Alshatwi AA
    Cell Biol Toxicol; 2014 Apr; 30(2):89-100. PubMed ID: 24526451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fate Determination of ZnO in Commercial Foods and Human Intestinal Cells.
    Jeon YR; Yu J; Choi SJ
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.