BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 32563173)

  • 1. Impact of childhood adversity on network reconfiguration dynamics during working memory in hypogonadal women.
    Shanmugan S; Cao W; Satterthwaite TD; Sammel MD; Ashourvan A; Bassett DS; Ruparel K; Gur RC; Epperson CN; Loughead J
    Psychoneuroendocrinology; 2020 Sep; 119():104710. PubMed ID: 32563173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of early life adversity and tryptophan depletion on functional connectivity in menopausal women: A double-blind, placebo-controlled crossover study.
    Shanmugan S; Satterthwaite TD; Sammel MD; Cao W; Ruparel K; Gur RC; Epperson CN; Loughead J
    Psychoneuroendocrinology; 2017 Oct; 84():197-205. PubMed ID: 28755550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Tryptophan Depletion on Executive System Function during Menopause is Moderated by Childhood Adversity.
    Shanmugan S; Loughead J; Cao W; Sammel MD; Satterthwaite TD; Ruparel K; Gur RC; Epperson CN
    Neuropsychopharmacology; 2017 Nov; 42(12):2398-2406. PubMed ID: 28322235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An fMRI investigation of the relationship between future imagination and cognitive flexibility.
    Roberts RP; Wiebels K; Sumner RL; van Mulukom V; Grady CL; Schacter DL; Addis DR
    Neuropsychologia; 2017 Jan; 95():156-172. PubMed ID: 27908591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic reconfiguration of frontal brain networks during executive cognition in humans.
    Braun U; Schäfer A; Walter H; Erk S; Romanczuk-Seiferth N; Haddad L; Schweiger JI; Grimm O; Heinz A; Tost H; Meyer-Lindenberg A; Bassett DS
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11678-83. PubMed ID: 26324898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations to task positive and task negative networks during executive functioning in Mild Cognitive Impairment.
    Melrose RJ; Jimenez AM; Riskin-Jones H; Weissberger G; Veliz J; Hasratian AS; Wilkins S; Sultzer DL
    Neuroimage Clin; 2018; 19():970-981. PubMed ID: 30003034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topologically Reorganized Connectivity Architecture of Default-Mode, Executive-Control, and Salience Networks across Working Memory Task Loads.
    Liang X; Zou Q; He Y; Yang Y
    Cereb Cortex; 2016 Apr; 26(4):1501-1511. PubMed ID: 25596593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Dynamics Underlying Cognitive Flexibility Across the Lifespan.
    Kupis L; Goodman ZT; Kornfeld S; Hoang S; Romero C; Dirks B; Dehoney J; Chang C; Spreng RN; Nomi JS; Uddin LQ
    Cereb Cortex; 2021 Oct; 31(11):5263-5274. PubMed ID: 34145442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Working memory load-dependent changes in cortical network connectivity estimated by machine learning.
    Eryilmaz H; Dowling KF; Hughes DE; Rodriguez-Thompson A; Tanner A; Huntington C; Coon WG; Roffman JL
    Neuroimage; 2020 Aug; 217():116895. PubMed ID: 32360929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of working memory training: Evidence for plasticity in older adults.
    Iordan AD; Cooke KA; Moored KD; Katz B; Buschkuehl M; Jaeggi SM; Polk TA; Peltier SJ; Jonides J; Reuter-Lorenz PA
    Neuroimage; 2020 Aug; 217():116887. PubMed ID: 32376302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson's Disease.
    Putcha D; Ross RS; Cronin-Golomb A; Janes AC; Stern CE
    J Int Neuropsychol Soc; 2016 Feb; 22(2):205-15. PubMed ID: 26888617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Connectivity Networks and Their Recruitment During Working Memory Tasks in Adult Survivors of Childhood Brain Tumors.
    Fox ME; Turner JA; Crosson B; Morris RD; King TZ
    Brain Connect; 2021 Dec; 11(10):822-837. PubMed ID: 33858201
    [No Abstract]   [Full Text] [Related]  

  • 15. State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility.
    Douw L; Wakeman DG; Tanaka N; Liu H; Stufflebeam SM
    Neuroscience; 2016 Dec; 339():12-21. PubMed ID: 27687802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resting state network connectivity is associated with cognitive flexibility performance in youth in the Adolescent Brain Cognitive Development Study.
    Thomas SA; Ryan SK; Gilman J
    Neuropsychologia; 2023 Dec; 191():108708. PubMed ID: 37898357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic reconfiguration of brain coactivation states that underlying working memory correlates with cognitive decline in clinically unimpaired older adults.
    Li L; Chen Z; Zhang L; Zhang M; Liu H; Wu D; Ren P; Zhang Z
    Cereb Cortex; 2024 Jan; 34(2):. PubMed ID: 38244565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Default mode network deactivation in pediatric temporal lobe epilepsy: Relationship to a working memory task and executive function tests.
    Oyegbile TO; VanMeter JW; Motamedi GK; Bell WL; Gaillard WD; Hermann BP
    Epilepsy Behav; 2019 May; 94():124-130. PubMed ID: 30909075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal fronto-striatal intrinsic connectivity reflects executive dysfunction in alcohol use disorders.
    Galandra C; Basso G; Manera M; Crespi C; Giorgi I; Vittadini G; Poggi P; Canessa N
    Cortex; 2019 Jun; 115():27-42. PubMed ID: 30738999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
    Petrican R; Grady CL
    J Neurosci; 2017 Aug; 37(32):7711-7726. PubMed ID: 28716967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.