BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32563202)

  • 1. HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle.
    Hurtado E; Núñez-Álvarez Y; Muñoz M; Gutiérrez-Caballero C; Casas J; Pendás AM; Peinado MA; Suelves M
    FEBS J; 2021 Feb; 288(3):902-919. PubMed ID: 32563202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK.
    Cui X; Yao L; Yang X; Gao Y; Fang F; Zhang J; Wang Q; Chang Y
    Am J Physiol Endocrinol Metab; 2017 Oct; 313(4):E493-E505. PubMed ID: 28765271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of HDAC11 accelerates skeletal muscle regeneration in mice.
    Núñez-Álvarez Y; Hurtado E; Muñoz M; García-Tuñon I; Rech GE; Pluvinet R; Sumoy L; Pendás AM; Peinado MA; Suelves M
    FEBS J; 2021 Feb; 288(4):1201-1223. PubMed ID: 32602219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.
    Hénique C; Mansouri A; Vavrova E; Lenoir V; Ferry A; Esnous C; Ramond E; Girard J; Bouillaud F; Prip-Buus C; Cohen I
    FASEB J; 2015 Jun; 29(6):2473-83. PubMed ID: 25713059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acylcarnitines: potential implications for skeletal muscle insulin resistance.
    Aguer C; McCoin CS; Knotts TA; Thrush AB; Ono-Moore K; McPherson R; Dent R; Hwang DH; Adams SH; Harper ME
    FASEB J; 2015 Jan; 29(1):336-45. PubMed ID: 25342132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HDAC11 Regulates Glycolysis through the LKB1/AMPK Signaling Pathway to Maintain Hepatocellular Carcinoma Stemness.
    Bi L; Ren Y; Feng M; Meng P; Wang Q; Chen W; Jiao Q; Wang Y; Du L; Zhou F; Jiang Y; Chen F; Wang C; Tang B; Wang Y
    Cancer Res; 2021 Apr; 81(8):2015-2028. PubMed ID: 33602787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.
    Chicco AJ; Le CH; Gnaiger E; Dreyer HC; Muyskens JB; D'Alessandro A; Nemkov T; Hocker AD; Prenni JE; Wolfe LM; Sindt NM; Lovering AT; Subudhi AW; Roach RC
    J Biol Chem; 2018 May; 293(18):6659-6671. PubMed ID: 29540485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat.
    Warren BE; Lou PH; Lucchinetti E; Zhang L; Clanachan AS; Affolter A; Hersberger M; Zaugg M; Lemieux H
    Am J Physiol Endocrinol Metab; 2014 Mar; 306(6):E658-67. PubMed ID: 24425766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.
    Zabielski P; Lanza IR; Gopala S; Heppelmann CJ; Bergen HR; Dasari S; Nair KS
    Diabetes; 2016 Mar; 65(3):561-73. PubMed ID: 26718503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes.
    Núñez-Álvarez Y; Suelves M
    FEBS J; 2022 May; 289(10):2771-2792. PubMed ID: 33891374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACC2 Deletion Enhances IMCL Reduction Along With Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice.
    Takagi H; Ikehara T; Kashiwagi Y; Hashimoto K; Nanchi I; Shimazaki A; Nambu H; Yukioka H
    Endocrinology; 2018 Aug; 159(8):3007-3019. PubMed ID: 29931154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programming and Regulation of Metabolic Homeostasis by HDAC11.
    Sun L; Marin de Evsikova C; Bian K; Achille A; Telles E; Pei H; Seto E
    EBioMedicine; 2018 Jul; 33():157-168. PubMed ID: 29958910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons.
    Zhang J; Light AR; Hoppel CL; Campbell C; Chandler CJ; Burnett DJ; Souza EC; Casazza GA; Hughen RW; Keim NL; Newman JW; Hunter GR; Fernandez JR; Garvey WT; Harper ME; Fiehn O; Adams SH
    Exp Physiol; 2017 Jan; 102(1):48-69. PubMed ID: 27730694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation.
    Pereyra AS; Lin CT; Sanchez DM; Laskin J; Spangenburg EE; Neufer PD; Fisher-Wellman K; Ellis JM
    Mol Metab; 2022 May; 59():101456. PubMed ID: 35150906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice.
    Wang Y; Li X; Guo Y; Chan L; Guan X
    Metabolism; 2010 Jul; 59(7):967-76. PubMed ID: 20015518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance.
    Smith CD; Lin CT; McMillin SL; Weyrauch LA; Schmidt CA; Smith CA; Kurland IJ; Witczak CA; Neufer PD
    Am J Physiol Endocrinol Metab; 2021 May; 320(5):E938-E950. PubMed ID: 33813880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The saturation degree of fatty acids and their derived acylcarnitines determines the direct effect of metabolically active thyroid hormones on insulin sensitivity in skeletal muscle cells.
    Giacco A; Delli Paoli G; Senese R; Cioffi F; Silvestri E; Moreno M; Ruoppolo M; Caterino M; Costanzo M; Lombardi A; Goglia F; Lanni A; de Lange P
    FASEB J; 2019 Feb; 33(2):1811-1823. PubMed ID: 30204501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice.
    Attané C; Foussal C; Le Gonidec S; Benani A; Daviaud D; Wanecq E; Guzmán-Ruiz R; Dray C; Bezaire V; Rancoule C; Kuba K; Ruiz-Gayo M; Levade T; Penninger J; Burcelin R; Pénicaud L; Valet P; Castan-Laurell I
    Diabetes; 2012 Feb; 61(2):310-20. PubMed ID: 22210322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial fat oxidation is essential for lipid-induced inflammation in skeletal muscle in mice.
    Warfel JD; Bermudez EM; Mendoza TM; Ghosh S; Zhang J; Elks CM; Mynatt R; Vandanmagsar B
    Sci Rep; 2016 Nov; 6():37941. PubMed ID: 27892502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.