BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32563396)

  • 1. An improved vehicle-pedestrian near-crash identification method with a roadside LiDAR sensor.
    Wu J; Xu H; Zhang Y; Sun R
    J Safety Res; 2020 Jun; 73():211-224. PubMed ID: 32563396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method of vehicle-pedestrian near-crash identification with roadside LiDAR data.
    Wu J; Xu H; Zheng Y; Tian Z
    Accid Anal Prev; 2018 Dec; 121():238-249. PubMed ID: 30265910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel skateboarder-related near-crash identification method with roadside LiDAR data.
    Wu J; Zhang Y; Xu H
    Accid Anal Prev; 2020 Mar; 137():105438. PubMed ID: 32004863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian extreme value theory modelling framework to assess corridor-wide pedestrian safety using autonomous vehicle sensor data.
    Singh S; Ali Y; Haque MM
    Accid Anal Prev; 2024 Feb; 195():107416. PubMed ID: 38056025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injury severity analysis in taxi-pedestrian crashes: An application of reconstructed crash data using a vehicle black box.
    Chung Y
    Accid Anal Prev; 2018 Feb; 111():345-353. PubMed ID: 29274955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left-turning vehicle-pedestrian conflicts at signalized intersections with traffic lights: Benefit or harm? A two-stage study.
    He YL; Li RT; Li L; Schwebel DC; Huang HL; Yin QY; Hu GQ
    Chin J Traumatol; 2019 Apr; 22(2):63-68. PubMed ID: 30962130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating pedestrian crash scenarios in a driving simulator environment.
    Chrysler ST; Ahmad O; Schwarz CW
    Traffic Inj Prev; 2015; 16 Suppl 1():S12-7. PubMed ID: 26027964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pedestrian crash risk analysis using extreme value models: New insights and evidence.
    Ankunda A; Ali Y; Mohanty M
    Accid Anal Prev; 2024 Aug; 203():107633. PubMed ID: 38754318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do drivers overtake pedestrians? Evidence from field test and naturalistic driving data.
    Rasch A; Panero G; Boda CN; Dozza M
    Accid Anal Prev; 2020 May; 139():105494. PubMed ID: 32203729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-depth approach for identifying crash causation patterns and its implications for pedestrian crash prevention.
    Yue L; Abdel-Aty M; Wu Y; Zheng O; Yuan J
    J Safety Res; 2020 Jun; 73():119-132. PubMed ID: 32563384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing right-turning vehicle-pedestrian conflicts at intersections using an integrated microscopic simulation model.
    Chen P; Zeng W; Yu G
    Accid Anal Prev; 2019 Aug; 129():211-224. PubMed ID: 31170560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of pedestrian crashes on two-way two-lane rural roads in Ethiopia.
    Tulu GS; Washington S; Haque MM; King MJ
    Accid Anal Prev; 2015 May; 78():118-126. PubMed ID: 25770907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considering real-world sightline obstructions in crash and injury prevention estimates for left turn across path/opposite direction intersection active safety systems.
    Bareiss M; Gabler HC; Sherony R
    Traffic Inj Prev; 2020 Oct; 21(sup1):S102-S106. PubMed ID: 33026259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinant contributing variables to severity levels of pedestrian crossed the road crashes in three cities in Indonesia.
    Tjahjono T; Swantika B; Kusuma A; Purnomo R; Tambun GH
    Traffic Inj Prev; 2021; 22(4):318-323. PubMed ID: 33739216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the risk factors associated with pedestrian injury severity in Illinois.
    Pour-Rouholamin M; Zhou H
    J Safety Res; 2016 Jun; 57():9-17. PubMed ID: 27178074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of pedestrian safety at intersections: A theoretical framework based on pedestrian-vehicle interaction patterns.
    Ni Y; Wang M; Sun J; Li K
    Accid Anal Prev; 2016 Nov; 96():118-129. PubMed ID: 27521905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting pediatric pedestrian injury prevention efforts: teasing the information through spatial analysis.
    Statter M; Schuble T; Harris-Rosado M; Liu D; Quinlan K
    J Trauma; 2011 Nov; 71(5 Suppl 2):S511-6. PubMed ID: 22072037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining and screening crash surrogate events using naturalistic driving data.
    Wu KF; Jovanis PP
    Accid Anal Prev; 2013 Dec; 61():10-22. PubMed ID: 23177902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of driver, pedestrian, and environmental characteristics and resulting pedestrian injury.
    Kemnitzer CR; Pope CN; Nwosu A; Zhao S; Wei L; Zhu M
    Traffic Inj Prev; 2019; 20(5):510-514. PubMed ID: 31180735
    [No Abstract]   [Full Text] [Related]  

  • 20. Pedestrian gestures increase driver yielding at uncontrolled mid-block road crossings.
    Zhuang X; Wu C
    Accid Anal Prev; 2014 Sep; 70():235-44. PubMed ID: 24821628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.