BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32563402)

  • 1. Near crash characteristics among risky drivers using the SHRP2 naturalistic driving study.
    Seacrist T; Douglas EC; Hannan C; Rogers R; Belwadi A; Loeb H
    J Safety Res; 2020 Jun; 73():263-269. PubMed ID: 32563402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of near crashes among teen, young adult, and experienced adult drivers using the SHRP2 naturalistic driving study.
    Seacrist T; Douglas EC; Huang E; Megariotis J; Prabahar A; Kashem A; Elzarka A; Haber L; MacKinney T; Loeb H
    Traffic Inj Prev; 2018 Feb; 19(sup1):S89-S96. PubMed ID: 29584473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of crash rates and rear-end striking crashes among novice teens and experienced adults using the SHRP2 Naturalistic Driving Study.
    Seacrist T; Belwadi A; Prabahar A; Chamberlain S; Megariotis J; Loeb H
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():48-52. PubMed ID: 27586102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-depth analysis of crash contributing factors and potential ADAS interventions among at-risk drivers using the SHRP 2 naturalistic driving study.
    Seacrist T; Maheshwari J; Sarfare S; Chingas G; Thirkill M; Loeb HS
    Traffic Inj Prev; 2021; 22(sup1):S68-S73. PubMed ID: 34663136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.
    Scanlon JM; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S182-9. PubMed ID: 26436230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of failure-caused traffic conflicts as surrogates of rear-end collisions in naturalistic driving studies.
    Tarko AP; Lizarazo CG
    Accid Anal Prev; 2021 Jan; 149():105863. PubMed ID: 33189030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multitasking additional-to-driving: Prevalence, structure, and associated risk in SHRP2 naturalistic driving data.
    Bálint A; Flannagan CAC; Leslie A; Klauer S; Guo F; Dozza M
    Accid Anal Prev; 2020 Mar; 137():105455. PubMed ID: 32036106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing driver behavior using shrp2 adverse weather data.
    Druta C; Kassing A; Gibbons R; Alden VA
    J Safety Res; 2020 Jun; 73():283-295. PubMed ID: 32563404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of teen and adult driver crash scenarios in a nationally representative sample of serious crashes.
    McDonald CC; Curry AE; Kandadai V; Sommers MS; Winston FK
    Accid Anal Prev; 2014 Nov; 72():302-8. PubMed ID: 25103321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steering or braking avoidance response in SHRP2 rear-end crashes and near-crashes: A decision tree approach.
    Sarkar A; Hickman JS; McDonald AD; Huang W; Vogelpohl T; Markkula G
    Accid Anal Prev; 2021 May; 154():106055. PubMed ID: 33691227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of age and secondary task engagement on motor vehicle crashes in a naturalistic setting.
    Calvo JA; Baldwin C; Philips B
    J Safety Res; 2020 Jun; 73():297-302. PubMed ID: 32563405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related differences in fatal intersection crashes in the United States.
    Lombardi DA; Horrey WJ; Courtney TK
    Accid Anal Prev; 2017 Feb; 99(Pt A):20-29. PubMed ID: 27855312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the combined effects of driving situations on freeway rear-end crash risk using naturalistic driving study data.
    Wu KK; Wang L
    Accid Anal Prev; 2021 Feb; 150():105866. PubMed ID: 33276188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of age on crash risk associated with driver distraction.
    Guo F; Klauer SG; Fang Y; Hankey JM; Antin JF; Perez MA; Lee SE; Dingus TA
    Int J Epidemiol; 2017 Feb; 46(1):258-265. PubMed ID: 28338711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using SHRP2 NDS data to examine infrastructure and other factors contributing to older driver crashes during left turns at signalized intersections.
    Zafian T; Ryan A; Agrawal R; Samuel S; Knodler M
    Accid Anal Prev; 2021 Jun; 156():106141. PubMed ID: 33873135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the effects of critical driving situations on driver perception time (PT) using SHRP2 naturalistic driving study data.
    Wu KF; Lin YJ
    Accid Anal Prev; 2019 Jul; 128():94-102. PubMed ID: 30991292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical older driver errors in a national sample of serious U.S. crashes.
    Cicchino JB; McCartt AT
    Accid Anal Prev; 2015 Jul; 80():211-9. PubMed ID: 25916662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Young driver risky behaviour and predictors of crash risk in Australia, New Zealand and Colombia: Same but different?
    Scott-Parker B; Oviedo-Trespalacios O
    Accid Anal Prev; 2017 Feb; 99(Pt A):30-38. PubMed ID: 27865138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alcohol involvement and other risky driver behaviors: effects on crash initiation and crash severity.
    Shyhalla K
    Traffic Inj Prev; 2014; 15(4):325-34. PubMed ID: 24471355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mining patterns of near-crash events with and without secondary tasks.
    Kong X; Das S; Zhang Y
    Accid Anal Prev; 2021 Jul; 157():106162. PubMed ID: 33984756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.