BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32563449)

  • 1. Clinical Application of in Vitro Embryo Production in the Horse.
    Stout TAE
    J Equine Vet Sci; 2020 Jun; 89():103011. PubMed ID: 32563449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Success rate in a clinical equine in vitro embryo production program.
    Claes A; Stout TAE
    Theriogenology; 2022 Jul; 187():215-218. PubMed ID: 35623226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer.
    Galli C; Colleoni S; Duchi R; Lagutina I; Lazzari G
    Anim Reprod Sci; 2007 Mar; 98(1-2):39-55. PubMed ID: 17101246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assisted reproductive techniques in mares.
    Hinrichs K
    Reprod Domest Anim; 2018 Sep; 53 Suppl 2():4-13. PubMed ID: 30238661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the likelihood of pregnancy and embryonic loss after transfer of cryopreserved in vitro produced equine embryos.
    Claes A; Cuervo-Arango J; van den Broek J; Galli C; Colleoni S; Lazzari G; Deelen C; Beitsma M; Stout TA
    Equine Vet J; 2019 Jul; 51(4):446-450. PubMed ID: 30269336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successful equine in vitro embryo production by ICSI - effect of season, mares' age, breed, and phase of the estrous cycle on embryo production.
    Fonte JS; Alonso MA; Junior MPM; Gonçalves MA; Pontes JH; Bordignon V; Fleury PDC; Fernandes CB
    Theriogenology; 2024 Jul; 223():47-52. PubMed ID: 38669841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mare and stallion effects on blastocyst production in a commercial equine ovum pick-up-intracytoplasmic sperm injection program.
    Cuervo-Arango J; Claes AN; Stout TAE
    Reprod Fertil Dev; 2019 Jan; 31(12):1894-1903. PubMed ID: 31634435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory Production of Equine Embryos.
    Lazzari G; Colleoni S; Crotti G; Turini P; Fiorini G; Barandalla M; Landriscina L; Dolci G; Benedetti M; Duchi R; Galli C
    J Equine Vet Sci; 2020 Jun; 89():103097. PubMed ID: 32563445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Different Flushing Media Used to Aspirate Follicles on the Outcome of a Commercial Ovum Pickup-ICSI Program in Mares.
    Cuervo-Arango J; Claes AN; Beitsma M; Stout TAE
    J Equine Vet Sci; 2019 Apr; 75():74-77. PubMed ID: 31002097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse.
    Foss R; Ortis H; Hinrichs K
    Equine Vet J Suppl; 2013 Dec; (45):39-43. PubMed ID: 24304402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to follicular fluid during oocyte maturation and oviductal fluid during post-maturation does not improve in vitro embryo production in the horse.
    Douet C; Parodi O; Martino NA; Lacalandra GM; Nicassio M; Reigner F; Deleuze S; Dell'Aquila ME; Goudet G
    Zygote; 2017 Oct; 25(5):612-630. PubMed ID: 28929977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimethyl sulfoxide and glycerol as cryoprotectant agents of stallion semen: effects on blastocyst rates following intracytoplasmic sperm injection of IVM equine oocytes.
    Cook NL; Masterson KR; Battaglia D; Beck R; Metcalf ES
    Reprod Fertil Dev; 2020 Feb; 32(3):253-258. PubMed ID: 32172784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of foal production following intracytoplasmic sperm injection and blastocyst culture of oocytes from ovaries collected immediately before euthanasia or after death of mares under field conditions.
    Hinrichs K; Choi YH; Norris JD; Love LB; Bedford-Guaus SJ; Hartman DL; Velez IC
    J Am Vet Med Assoc; 2012 Oct; 241(8):1070-4. PubMed ID: 23039983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Holding and Cryopreservation of Equine Oocytes and Embryos.
    Hinrichs K
    J Equine Vet Sci; 2020 Jun; 89():102990. PubMed ID: 32563444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of clinically-related factors on in vitro blastocyst development after equine ICSI.
    Choi YH; Velez IC; Macías-García B; Riera FL; Ballard CS; Hinrichs K
    Theriogenology; 2016 Apr; 85(7):1289-96. PubMed ID: 26777560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different shipping temperatures (∼22 °C vs. ∼7 °C) and holding media on blastocyst development after overnight holding of immature equine cumulus-oocyte complexes.
    Diaw M; Salgado RM; Canesin HS; Gridley N; Hinrichs K
    Theriogenology; 2018 Apr; 111():62-68. PubMed ID: 29428846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryo technologies in the horse.
    Squires EL; Carnevale EM; McCue PM; Bruemmer JE
    Theriogenology; 2003 Jan; 59(1):151-70. PubMed ID: 12499026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspectives on the development and incorporation of assisted reproduction in the equine industry.
    Squires EL
    Reprod Fertil Dev; 2019 Jan; 31(12):1753-1757. PubMed ID: 31727207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Reproductive Technologies Impacting Equine Embryo Production.
    Squires E
    J Equine Vet Sci; 2020 Jun; 89():102981. PubMed ID: 32563442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice.
    Galli C; Duchi R; Colleoni S; Lagutina I; Lazzari G
    Theriogenology; 2014 Jan; 81(1):138-51. PubMed ID: 24274418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.