These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32563461)

  • 1. Boron inhibits cadmium uptake in wheat (Triticum aestivum) by regulating gene expression.
    Qin S; Liu H; Rengel Z; Gao W; Nie Z; Li C; Hou M; Cheng J; Zhao P
    Plant Sci; 2020 Aug; 297():110522. PubMed ID: 32563461
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Zhu J; Zhao P; Nie Z; Shi H; Li C; Wang Y; Qin S; Qin X; Liu H
    BMC Plant Biol; 2020 Dec; 20(1):550. PubMed ID: 33287728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of a gene network in durum wheat roots exposed to cadmium.
    Aprile A; Sabella E; Vergine M; Genga A; Siciliano M; Nutricati E; Rampino P; De Pascali M; Luvisi A; Miceli A; Negro C; De Bellis L
    BMC Plant Biol; 2018 Oct; 18(1):238. PubMed ID: 30326849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of boron on cadmium uptake and expression of Cd transport genes at different growth stages of wheat (Triticum aestivum L.).
    Qin S; Xu Y; Nie Z; Liu H; Gao W; Li C; Wang L; Zhao P
    Ecotoxicol Environ Saf; 2022 Aug; 241():113834. PubMed ID: 36068760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative profiling of roots small RNA expression and corresponding gene ontology and pathway analyses for low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress.
    Zhou M; Zheng S; Li Y; Liu R; Zhang L; Wu Y
    Funct Integr Genomics; 2020 Mar; 20(2):177-190. PubMed ID: 31435847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings.
    Li LZ; Tu C; Peijnenburg WJGM; Luo YM
    Environ Pollut; 2017 Feb; 221():351-358. PubMed ID: 28012673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ralstonia eutropha Q2-8 reduces wheat plant above-ground tissue cadmium and arsenic uptake and increases the expression of the plant root cell wall organization and biosynthesis-related proteins.
    Wang XH; Wang Q; Nie ZW; He LY; Sheng XF
    Environ Pollut; 2018 Nov; 242(Pt B):1488-1499. PubMed ID: 30144722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicate reduces cadmium uptake into cells of wheat.
    Greger M; Kabir AH; Landberg T; Maity PJ; Lindberg S
    Environ Pollut; 2016 Apr; 211():90-7. PubMed ID: 26745394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cadmium toxicity on diploid wheat (Triticum urartu) and the molecular mechanism of the cadmium response.
    Qiao K; Liang S; Wang F; Wang H; Hu Z; Chai T
    J Hazard Mater; 2019 Jul; 374():1-10. PubMed ID: 30974226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.).
    Leaungthitikanchana S; Fujibe T; Tanaka M; Wang S; Sotta N; Takano J; Fujiwara T
    Plant Cell Physiol; 2013 Jul; 54(7):1056-63. PubMed ID: 23596187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomic and antioxidant enzyme activity changes in response to cadmium stress under boron application of wheat (Triticum aestivum).
    Qin S; Xu Y; Nie Z; Liu H; Gao W; Li C; Zhao P
    Environ Sci Pollut Res Int; 2022 May; 29(23):34701-34713. PubMed ID: 35040057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants.
    Chen D; Chen D; Xue R; Long J; Lin X; Lin Y; Jia L; Zeng R; Song Y
    J Hazard Mater; 2019 Apr; 367():447-455. PubMed ID: 30611037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency.
    Chen C; Cao Q; Jiang Q; Li J; Yu R; Shi G
    BMC Plant Biol; 2019 Jan; 19(1):35. PubMed ID: 30665365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of root transcriptome profiles between low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress.
    Zhou M; Zheng S; Liu R; Lu J; Lu L; Zhang C; Liu Z; Luo C; Zhang L; Wu Y
    Funct Integr Genomics; 2019 Mar; 19(2):281-294. PubMed ID: 30443851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro-cultured wheat spikes provide a simplified alternative for studies of cadmium uptake in developing grains.
    Ganeshan S; Leis M; Drinkwater JM; Madsen LT; Jain JC; Chibbar RN
    J Sci Food Agric; 2012 Jun; 92(8):1740-7. PubMed ID: 22173723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The polish wheat (Triticum polonicum L.) TpSnRK2.10 and TpSnRK2.11 meditate the accumulation and the distribution of cd and Fe in transgenic Arabidopsis plants.
    Wang R; Wang C; Yao Q; Xiao X; Fan X; Sha L; Zeng J; Kang H; Zhang H; Zhou Y; Wang Y
    BMC Genomics; 2019 Mar; 20(1):210. PubMed ID: 30866815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2.
    Qiao K; Wang F; Liang S; Wang H; Hu Z; Chai T
    Sci Rep; 2019 Jan; 9(1):870. PubMed ID: 30696904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus).
    Zhang XD; Meng JG; Zhao KX; Chen X; Yang ZM
    Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus.
    Meng JG; Zhang XD; Tan SK; Zhao KX; Yang ZM
    Biometals; 2017 Dec; 30(6):917-931. PubMed ID: 28993932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.).
    Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.