BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32563907)

  • 1. Noble metal-based sorbents: A way to avoid new waste after mercury removal.
    Antuña-Nieto C; Rodríguez E; Lopez-Anton MA; García R; Martínez-Tarazona MR
    J Hazard Mater; 2020 Dec; 400():123168. PubMed ID: 32563907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of regenerable sorbents for mercury capture in gas phase.
    Lopez-Anton MA; Fernández-Miranda N; Martínez-Tarazona MR
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24495-24503. PubMed ID: 27604126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents.
    Ballestero D; Gómez-Giménez C; García-Díez E; Juan R; Rubio B; Izquierdo MT
    J Hazard Mater; 2013 Sep; 260():247-54. PubMed ID: 23774780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg
    Cao T; Li Z; Xiong Y; Yang Y; Xu S; Bisson T; Gupta R; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11909-11917. PubMed ID: 28823171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents.
    Izquierdo MT; Ballestero D; Juan R; García-Díez E; Rubio B; Ruiz C; Pino MR
    J Hazard Mater; 2011 Oct; 193():304-10. PubMed ID: 21855215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury removal from MSW incineration flue gas by mineral-based sorbents.
    Rumayor M; Svoboda K; Švehla J; Pohořelý M; Šyc M
    Waste Manag; 2018 Mar; 73():265-270. PubMed ID: 29248369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents.
    Dong J; Xu Z; Kuznicki SM
    Environ Sci Technol; 2009 May; 43(9):3266-71. PubMed ID: 19534145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.
    Lopez-Anton MA; Ferrera-Lorenzo N; Fuente E; Díaz-Somoano M; Suarez-Ruíz I; Martínez-Tarazona MR; Ruiz B
    Chemosphere; 2015 Apr; 125():191-7. PubMed ID: 25585865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-Effective Manganese Ore Sorbent for Elemental Mercury Removal from Flue Gas.
    Yang Y; Miao S; Liu J; Wang Z; Yu Y
    Environ Sci Technol; 2019 Aug; 53(16):9957-9965. PubMed ID: 31369246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.
    Liu Y; Kelly DJ; Yang H; Lin CC; Kuznicki SM; Xu Z
    Environ Sci Technol; 2008 Aug; 42(16):6205-10. PubMed ID: 18767688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of brownfields contaminated by organic compounds and heavy metals: a bench-scale test of a sulfur/vermiculite sorbent for mercury vapor removal.
    Topka P; Soukup K; Hejtmánek V; Hlásenský I; Kaštánek F; Šolcová O
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):42182-42188. PubMed ID: 32888153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of bamboo-derived sorbents for mercury removal in gas phase.
    Siddiqui N; Don J; Mondal K; Mahajan A
    Environ Technol; 2011; 32(3-4):383-94. PubMed ID: 21780706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of CO and CO
    Zhou Q; Zhou J; Cao H; Xu X
    ACS Omega; 2021 Feb; 6(4):2916-2924. PubMed ID: 33553910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver impregnated carbon for adsorption and desorption of elemental mercury vapors.
    Karatza D; Prisciandaro M; Lancia A; Musmarra D
    J Environ Sci (China); 2011; 23(9):1578-84. PubMed ID: 22432297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of mercury from an alumina refinery aqueous stream.
    Mullett M; Tardio J; Bhargava S; Dobbs C
    J Hazard Mater; 2007 Jun; 144(1-2):274-82. PubMed ID: 17123705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of gold- and chlorine-impregnated bead-type activated carbon for a mercury sorbent trap.
    Song YC; Lee TG
    Chemosphere; 2016 Dec; 165():470-477. PubMed ID: 27684592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
    Li D; Han J; Han L; Wang J; Chang L
    J Environ Sci (China); 2014 Jul; 26(7):1497-504. PubMed ID: 25079999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.