These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32563907)

  • 21. Effect of impregnation sequence of Pd/Ce/γ-Al
    Huo Q; Yue C; Wang Y; Han L; Wang J; Chen S; Bao W; Chang L; Xie K
    Chemosphere; 2020 Jun; 249():126164. PubMed ID: 32065997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic effects of carbon sorbents for mercury capture.
    Olson ES; Miller SJ; Sharma RK; Dunham GE; Benson SA
    J Hazard Mater; 2000 May; 74(1-2):61-79. PubMed ID: 10781718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential hazards of novel waste-derived sorbents for efficient removal of mercury from coal combustion flue gas.
    Xu Y; Luo G; Zhang Q; Cui W; Li Z; Zhang S
    J Hazard Mater; 2021 Jun; 412():125226. PubMed ID: 33540268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.
    Tang H; Duan Y; Zhu C; Cai T; Li C; Cai L
    Chemosphere; 2017 Oct; 184():711-719. PubMed ID: 28641222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colorimetric determination of mercury(II) ion based on DNA-assisted amalgamation: a comparison study on gold, silver and Ag@Au Nanoplates.
    Zhang Y; Zhang L; Wang L; Wang G; Komiyama M; Liang X
    Mikrochim Acta; 2019 Oct; 186(11):713. PubMed ID: 31650278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons.
    Lee SS; Lee JY; Keener TC
    Environ Sci Technol; 2009 Apr; 43(8):2957-62. PubMed ID: 19475977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.
    Clack HL
    Environ Sci Technol; 2012 Jul; 46(13):7327-33. PubMed ID: 22663136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective removal of Hg
    Qin R; Chang S; Mei J; Hong Q; Yang S
    Water Res; 2022 Aug; 221():118796. PubMed ID: 35780764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of copper chloride-impregnated sorbents on mercury vapor control in an entrained-flow reactor system.
    Lee SS; Lee JY; Keener TC
    J Air Waste Manag Assoc; 2008 Nov; 58(11):1458-62. PubMed ID: 19044161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of vapor-phase elemental mercury from stack emissions with sulfur-impregnated activated carbon.
    Sowlat MH; Abdollahi M; Gharibi H; Yunesian M; Rastkari N
    Rev Environ Contam Toxicol; 2014; 230():1-34. PubMed ID: 24609516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of Hg
    Yang R; Diao Y; Abayneh B
    R Soc Open Sci; 2018 Sep; 5(9):180248. PubMed ID: 30839732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights on mercury abatement and modeling in a full-scale municipal solid waste incineration flue gas treatment unit.
    Romero LM; Lyczko N; Nzihou A; Antonini G; Moreau E; Richardeau H; Coste C; Madoui S; Durécu S
    Waste Manag; 2020 Jul; 113():270-279. PubMed ID: 32559697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sorption and stability of mercury on activated carbon for emission control.
    Graydon JW; Zhang X; Kirk DW; Jia CQ
    J Hazard Mater; 2009 Sep; 168(2-3):978-82. PubMed ID: 19327890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Treatment of hazardous sorbents generated from the adsorption of heavy metals during incineration.
    Wey MY; Yan MH; Chen JC
    J Hazard Mater; 2000 Mar; 73(1):19-37. PubMed ID: 10686376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas.
    Zhou J; Hou W; Qi P; Gao X; Luo Z; Cen K
    Environ Sci Technol; 2013 Sep; 47(17):10056-62. PubMed ID: 23931010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The thief process for mercury removal from flue gas.
    Granite EJ; Freeman MC; Hargis RA; O'Dowd WJ; Pennline HW
    J Environ Manage; 2007 Sep; 84(4):628-34. PubMed ID: 16959396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions.
    Li G; Shen B; Li Y; Zhao B; Wang F; He C; Wang Y; Zhang M
    J Hazard Mater; 2015 Nov; 298():162-9. PubMed ID: 26051992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing sorbents for mercury control in coal-combustion flue gas.
    Sjostrom S; Ebner T; Ley T; Slye R; Richardson C; Machalek T; Richardson M; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):902-11. PubMed ID: 12184688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.