BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32563950)

  • 1. Aqua regia digestion cannot completely extract Hg from biochar: A synchrotron-based study.
    Liu W; Feng Y; Zhong H; Ptacek C; Blowes D; Liu Y; Finfrock YZ; Liu P; Wang S
    Environ Pollut; 2020 Oct; 265(Pt A):115002. PubMed ID: 32563950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic investigation of mercury removal by unmodified and Fe-modified biochars based on synchrotron-based methods.
    Feng Y; Liu P; Wang Y; Liu W; Liu Y; Finfrock YZ
    Sci Total Environ; 2020 Jun; 719():137435. PubMed ID: 32114231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study.
    Feng Y; Liu P; Wang Y; Finfrock YZ; Xie X; Su C; Liu N; Yang Y; Xu Y
    J Hazard Mater; 2020 Feb; 384():121342. PubMed ID: 31610349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury distribution and speciation in biochar particles reacted with contaminated sediment up to 1030 days: A synchrotron-based study.
    Liu P; Ptacek CJ; Blowes DW; Finfrock YZ
    Sci Total Environ; 2019 Apr; 662():915-922. PubMed ID: 30708306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy.
    Liu P; Ptacek CJ; Elena KMA; Blowes DW; Gould WD; Finfrock YZ; Wang AO; Landis RC
    J Hazard Mater; 2018 Apr; 347():114-122. PubMed ID: 29304450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy.
    Liu P; Ptacek CJ; Blowes DW; Landis RC
    J Hazard Mater; 2016 May; 308():233-42. PubMed ID: 26844404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of gaseous elemental mercury by hydrogen chloride non-thermal plasma modified biochar.
    Luo J; Jin M; Ye L; Cao Y; Yan Y; Du R; Yoshiie R; Ueki Y; Naruse I; Lin C; Lee Y
    J Hazard Mater; 2019 Sep; 377():132-141. PubMed ID: 31158582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. As(III) and As(V) removal mechanisms by Fe-modified biochar characterized using synchrotron-based X-ray absorption spectroscopy and confocal micro-X-ray fluorescence imaging.
    Xu Y; Xie X; Feng Y; Ashraf MA; Liu Y; Su C; Qian K; Liu P
    Bioresour Technol; 2020 May; 304():122978. PubMed ID: 32066094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of mercury in sediment by using biochars under reducing conditions.
    Liu P; Ptacek CJ; Blowes DW; Finfrock YZ; Gordon RA
    J Hazard Mater; 2017 Mar; 325():120-128. PubMed ID: 27930996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury Complexation with Dissolved Organic Matter Released from Thirty-Six Types of Biochar.
    Liu P; Ptacek CJ; Blowes DW
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):175-180. PubMed ID: 30008039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple digestion method with a Lefort aqua regia solution for diatom extraction.
    Wang H; Liu Y; Zhao J; Hu S; Wang Y; Liu C; Zhang Y
    J Forensic Sci; 2015 Jan; 60 Suppl 1():S227-30. PubMed ID: 25399968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon.
    Xu X; Schierz A; Xu N; Cao X
    J Colloid Interface Sci; 2016 Feb; 463():55-60. PubMed ID: 26520810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution.
    Tan G; Sun W; Xu Y; Wang H; Xu N
    Bioresour Technol; 2016 Jul; 211():727-35. PubMed ID: 27061260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments.
    Wang AO; Ptacek CJ; Blowes DW; Gibson BD; Landis RC; Dyer JA; Ma J
    Sci Total Environ; 2019 Feb; 652():549-561. PubMed ID: 30368184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions.
    Li G; Shen B; Li Y; Zhao B; Wang F; He C; Wang Y; Zhang M
    J Hazard Mater; 2015 Nov; 298():162-9. PubMed ID: 26051992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions.
    Lu S; Zong Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30401-30409. PubMed ID: 30159845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of hotplate wet digestion methods for the determination of mercury in biosolids.
    Lomonte C; Gregory D; Baker AJM; Kolev SD
    Chemosphere; 2008 Aug; 72(10):1420-1424. PubMed ID: 18602136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil.
    Beckers F; Awad YM; Beiyuan J; Abrigata J; Mothes S; Tsang DCW; Ok YS; Rinklebe J
    Environ Int; 2019 Jun; 127():276-290. PubMed ID: 30951944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties.
    Xu D; Zhao Y; Sun K; Gao B; Wang Z; Jin J; Zhang Z; Wang S; Yan Y; Liu X; Wu F
    Chemosphere; 2014 Sep; 111():320-6. PubMed ID: 24997935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury Removal by Magnetic Biochar Derived from Simultaneous Activation and Magnetization of Sawdust.
    Yang J; Zhao Y; Ma S; Zhu B; Zhang J; Zheng C
    Environ Sci Technol; 2016 Nov; 50(21):12040-12047. PubMed ID: 27723318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.