These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 32564464)
1. Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D Pastor-Arroyo EM; Knöpfel T; Imenez Silva PH; Schnitzbauer U; Poncet N; Biber J; Wagner CA; Hernando N Acta Physiol (Oxf); 2020 Oct; 230(2):e13526. PubMed ID: 32564464 [TBL] [Abstract][Full Text] [Related]
2. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Motta SE; Imenez Silva PH; Daryadel A; Haykir B; Pastor-Arroyo EM; Bettoni C; Hernando N; Wagner CA Pflugers Arch; 2020 Apr; 472(4):449-460. PubMed ID: 32219532 [TBL] [Abstract][Full Text] [Related]
3. 1,25(OH) Hernando N; Pastor-Arroyo EM; Marks J; Schnitzbauer U; Knöpfel T; Bürki M; Bettoni C; Wagner CA J Physiol; 2021 Feb; 599(4):1131-1150. PubMed ID: 33200827 [TBL] [Abstract][Full Text] [Related]
4. Dietary supplemental vitamin D3 enhances phosphorus absorption and utilisation by regulating gene expression of related phosphate transporters in the small intestine of broilers. Shao Y; Wen Q; Zhang S; Lu L; Zhang L; Liao X; Luo X Br J Nutr; 2019 Jan; 121(1):9-21. PubMed ID: 30370888 [TBL] [Abstract][Full Text] [Related]
5. Evidence of an intestinal phosphate transporter alternative to type IIb sodium-dependent phosphate transporter in rats with chronic kidney disease. Ichida Y; Ohtomo S; Yamamoto T; Murao N; Tsuboi Y; Kawabe Y; Segawa H; Horiba N; Miyamoto KI; Floege J Nephrol Dial Transplant; 2021 Jan; 36(1):68-75. PubMed ID: 32879980 [TBL] [Abstract][Full Text] [Related]
6. The intestinal phosphate transporter NaPi-IIb (Slc34a2) is required to protect bone during dietary phosphate restriction. Knöpfel T; Pastor-Arroyo EM; Schnitzbauer U; Kratschmar DV; Odermatt A; Pellegrini G; Hernando N; Wagner CA Sci Rep; 2017 Sep; 7(1):11018. PubMed ID: 28887454 [TBL] [Abstract][Full Text] [Related]
7. Dexamethasone and cyclic AMP regulate sodium phosphate cotransporter (NaPi-IIb and Pit-1) mRNA and phosphate uptake in rat alveolar type II epithelial cells. Jin C; Zoidis E; Ghirlanda C; Schmid C Lung; 2010; 188(1):51-61. PubMed ID: 19806400 [TBL] [Abstract][Full Text] [Related]
8. Intestinal Depletion of NaPi-IIb/Slc34a2 in Mice: Renal and Hormonal Adaptation. Hernando N; Myakala K; Simona F; Knöpfel T; Thomas L; Murer H; Wagner CA; Biber J J Bone Miner Res; 2015 Oct; 30(10):1925-37. PubMed ID: 25827490 [TBL] [Abstract][Full Text] [Related]
9. The vitamin D analog ED-71 is a potent regulator of intestinal phosphate absorption and NaPi-IIb. Brown AJ; Zhang F; Ritter CS Endocrinology; 2012 Nov; 153(11):5150-6. PubMed ID: 22948213 [TBL] [Abstract][Full Text] [Related]
10. Phosphorus absorption and gene expression levels of related transporters in the small intestine of broilers. Hu Y; Liao X; Wen Q; Lu L; Zhang L; Luo X Br J Nutr; 2018 Jun; 119(12):1346-1354. PubMed ID: 29845902 [TBL] [Abstract][Full Text] [Related]
11. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice. Capuano P; Radanovic T; Wagner CA; Bacic D; Kato S; Uchiyama Y; St-Arnoud R; Murer H; Biber J Am J Physiol Cell Physiol; 2005 Feb; 288(2):C429-34. PubMed ID: 15643054 [TBL] [Abstract][Full Text] [Related]
12. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine. Radanovic T; Wagner CA; Murer H; Biber J Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G496-500. PubMed ID: 15701623 [TBL] [Abstract][Full Text] [Related]
13. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Giral H; Caldas Y; Sutherland E; Wilson P; Breusegem S; Barry N; Blaine J; Jiang T; Wang XX; Levi M Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1466-75. PubMed ID: 19675183 [TBL] [Abstract][Full Text] [Related]
14. Intestinal Response to Acute Intragastric and Intravenous Administration of Phosphate in Rats. Layunta E; Pastor Arroyo EM; Kägi L; Thomas L; Levi M; Hernando N; Wagner CA Cell Physiol Biochem; 2019; 52(4):838-849. PubMed ID: 30946558 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the isoforms of type IIb sodium-dependent phosphate cotransporter (Slc34a2) in yellow catfish, Pelteobagrus fulvidraco, and their vitamin D Chen P; Huang Y; Bayir A; Wang C Fish Physiol Biochem; 2017 Feb; 43(1):229-244. PubMed ID: 27620186 [TBL] [Abstract][Full Text] [Related]
17. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Villa-Bellosta R; Ravera S; Sorribas V; Stange G; Levi M; Murer H; Biber J; Forster IC Am J Physiol Renal Physiol; 2009 Apr; 296(4):F691-9. PubMed ID: 19073637 [TBL] [Abstract][Full Text] [Related]
18. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration. Saddoris KL; Fleet JC; Radcliffe JS J Nutr; 2010 Apr; 140(4):731-6. PubMed ID: 20164365 [TBL] [Abstract][Full Text] [Related]
19. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Reining SC; Liesegang A; Betz H; Biber J; Murer H; Hernando N Pflugers Arch; 2010 Jun; 460(1):207-17. PubMed ID: 20354864 [TBL] [Abstract][Full Text] [Related]
20. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]