BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 32564477)

  • 1. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries.
    Udaondo Z; Duque E; Daddaoua A; Caselles C; Roca A; Pizarro-Tobias P; Ramos JL
    Environ Microbiol; 2020 Aug; 22(8):3561-3571. PubMed ID: 32564477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Metagenomics Reveals an Overlooked Diversity and Novel Features of Soil-Derived Bacterial Phosphatases and Phytases.
    Castillo Villamizar GA; Nacke H; Boehning M; Herz K; Daniel R
    mBio; 2019 Jan; 10(1):. PubMed ID: 30696742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying Shannon's information theory to bacterial and phage genomes and metagenomes.
    Akhter S; Bailey BA; Salamon P; Aziz RK; Edwards RA
    Sci Rep; 2013; 3():1033. PubMed ID: 23301154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil.
    Meier MJ; Paterson ES; Lambert IB
    Appl Environ Microbiol; 2016 Feb; 82(3):897-909. PubMed ID: 26590287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily.
    Thaller MC; Schippa S; Rossolini GM
    Protein Sci; 1998 Jul; 7(7):1647-52. PubMed ID: 9684901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories.
    Nacke H; Will C; Herzog S; Nowka B; Engelhaupt M; Daniel R
    FEMS Microbiol Ecol; 2011 Oct; 78(1):188-201. PubMed ID: 21395625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a phosphatase secreted by Staphylococcus aureus strain 154, a new member of the bacterial class C family of nonspecific acid phosphatases.
    du Plessis EM; Theron J; Joubert L; Lotter T; Watson TG
    Syst Appl Microbiol; 2002 Apr; 25(1):21-30. PubMed ID: 12086184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic and metagenomic analysis of Verrucomicrobia in former agricultural grassland soil.
    Kielak A; Rodrigues JL; Kuramae EE; Chain PS; van Veen JA; Kowalchuk GA
    FEMS Microbiol Ecol; 2010 Jan; 71(1):23-33. PubMed ID: 19811538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization-assisted binning of metagenome assemblies reveals potential new pathogenic profiles in idiopathic travelers' diarrhea.
    Zhu Q; Dupont CL; Jones MB; Pham KM; Jiang ZD; DuPont HL; Highlander SK
    Microbiome; 2018 Nov; 6(1):201. PubMed ID: 30409177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling microbial strains in urban environments using metagenomic sequencing data.
    Zolfo M; Asnicar F; Manghi P; Pasolli E; Tett A; Segata N
    Biol Direct; 2018 May; 13(1):9. PubMed ID: 29743119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cloning and diversity analysis of microorganism genes from alkalescence soil].
    Hu TT; Jiang CJ; Liang X; Long WJ; Wu B
    Yi Chuan; 2006 Oct; 28(10):1287-93. PubMed ID: 17035189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery.
    Stewart RD; Auffret MD; Warr A; Walker AW; Roehe R; Watson M
    Nat Biotechnol; 2019 Aug; 37(8):953-961. PubMed ID: 31375809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography.
    Nayfach S; Rodriguez-Mueller B; Garud N; Pollard KS
    Genome Res; 2016 Nov; 26(11):1612-1625. PubMed ID: 27803195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life.
    Parks DH; Rinke C; Chuvochina M; Chaumeil PA; Woodcroft BJ; Evans PN; Hugenholtz P; Tyson GW
    Nat Microbiol; 2017 Nov; 2(11):1533-1542. PubMed ID: 28894102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of marker genes for genetic barcoding of microorganisms and binning of metagenomic reads by Barcoder software tools.
    Rotimi AM; Pierneef R; Reva ON
    BMC Bioinformatics; 2018 Aug; 19(1):309. PubMed ID: 30165813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strategy for predicting gene functions from genome and metagenome sequences on the basis of oligopeptide frequency distance.
    Abe T; Ikarashi R; Mizoguchi M; Otake M; Ikemura T
    Genes Genet Syst; 2020 Apr; 95(1):11-19. PubMed ID: 32161228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment.
    Hu Y; Fu C; Huang Y; Yin Y; Cheng G; Lei F; Lu N; Li J; Ashforth EJ; Zhang L; Zhu B
    FEMS Microbiol Ecol; 2010 May; 72(2):228-37. PubMed ID: 20337707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning.
    Lämmle K; Zipper H; Breuer M; Hauer B; Buta C; Brunner H; Rupp S
    J Biotechnol; 2007 Jan; 127(4):575-92. PubMed ID: 16963141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats' rumen.
    Do TH; Le NG; Dao TK; Nguyen TMP; Le TL; Luu HL; Nguyen KHV; Nguyen VL; Le LA; Phung TN; van Straalen NM; Roelofs D; Truong NH
    J Gen Appl Microbiol; 2018 Jul; 64(3):108-116. PubMed ID: 29526926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.