These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 32564700)
1. Quantification of landfill gas generation and renewable energy potential in arid countries: Case study of Bahrain. Coskuner G; Jassim MS; Nazeer N; Damindra GH Waste Manag Res; 2020 Oct; 38(10):1110-1118. PubMed ID: 32564700 [TBL] [Abstract][Full Text] [Related]
2. Harnessing landfill gas (LFG) for electricity: A strategy to mitigate greenhouse gas (GHG) emissions in Jakarta (Indonesia). Kurniawan TA; Liang X; Singh D; Othman MHD; Goh HH; Gikas P; Kern AO; Kusworo TD; Shoqeir JA J Environ Manage; 2022 Jan; 301():113882. PubMed ID: 34638040 [TBL] [Abstract][Full Text] [Related]
3. Modeling landfill gas potential and potential energy recovery from Thohoyandou landfill site, South Africa. Njoku PO; Edokpayi JN; Odiyo JO J Air Waste Manag Assoc; 2020 Aug; 70(8):820-833. PubMed ID: 32497468 [TBL] [Abstract][Full Text] [Related]
4. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Jeswani HK; Azapagic A Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085 [TBL] [Abstract][Full Text] [Related]
5. Methane emission quantification from municipal waste landfills: models and computer software-a case study of Long An Province, Vietnam. Bui LT; Nguyen PH; Nguyen DCM Environ Sci Pollut Res Int; 2022 Jun; 29(28):41886-41908. PubMed ID: 34236610 [TBL] [Abstract][Full Text] [Related]
6. Estimation of landfill gas production and potential utilization in a South Africa landfill. Njoku PO; Edokpayi JN J Air Waste Manag Assoc; 2023 Jan; 73(1):1-14. PubMed ID: 35503340 [TBL] [Abstract][Full Text] [Related]
7. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R; Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [TBL] [Abstract][Full Text] [Related]
8. Developing a carbon footprint model and environmental impact analysis of municipal solid waste transportation: A case study of Tehran, Iran. Rouhi K; Shafiepour Motlagh M; Dalir F J Air Waste Manag Assoc; 2023 Dec; 73(12):890-901. PubMed ID: 37843987 [TBL] [Abstract][Full Text] [Related]
9. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan. Inglezakis VJ; Rojas-Solórzano L; Kim J; Aitbekova A; Ismailova A Waste Manag Res; 2015 May; 33(5):486-94. PubMed ID: 25819927 [TBL] [Abstract][Full Text] [Related]
10. Technical and economic evaluation of biogas capture and treatment for the Piedras Blancas landfill in Córdoba, Argentina. Francisca FM; Montoro MA; Glatstein DA J Air Waste Manag Assoc; 2017 May; 67(5):537-549. PubMed ID: 27723443 [TBL] [Abstract][Full Text] [Related]
11. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Yang N; Zhang H; Shao LM; Lü F; He PJ J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116 [TBL] [Abstract][Full Text] [Related]
12. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment. de Souza SN; Horttanainen M; Antonelli J; Klaus O; Lindino CA; Nogueira CE Waste Manag Res; 2014 Oct; 32(10):1015-23. PubMed ID: 25323146 [TBL] [Abstract][Full Text] [Related]
13. Techno-economic assessment of landfill gas (LFG) to electric energy: Selection of the optimal technology through field-study and model simulation. Manasaki V; Palogos I; Chourdakis I; Tsafantakis K; Gikas P Chemosphere; 2021 Apr; 269():128688. PubMed ID: 33189397 [TBL] [Abstract][Full Text] [Related]
14. Techno-economic and sustainability analysis of siloxane removal from landfill gas used for electricity generation. Amaraibi RJ; Joseph B; Kuhn JN J Environ Manage; 2022 Jul; 314():115070. PubMed ID: 35452888 [TBL] [Abstract][Full Text] [Related]
15. Life-Cycle Assessment of a Regulatory Compliant U.S. Municipal Solid Waste Landfill. Wang Y; Levis JW; Barlaz MA Environ Sci Technol; 2021 Oct; 55(20):13583-13592. PubMed ID: 34597038 [TBL] [Abstract][Full Text] [Related]
16. Impact of leachate and landfill gas on the ecosystem and health: Research trends and the way forward towards sustainability. Ghosh A; Kumar S; Das J J Environ Manage; 2023 Jun; 336():117708. PubMed ID: 36913859 [TBL] [Abstract][Full Text] [Related]
17. Electricity generation from landfill gas in Turkey. Salihoglu NK J Air Waste Manag Assoc; 2018 Oct; 68(10):1126-1137. PubMed ID: 29737925 [TBL] [Abstract][Full Text] [Related]
18. Estimation of Gas Emissions using the LandGEM Model from the Landfill of Baft County, Kerman, Iran. Goushki MN; Shiri MA; Nozari M Environ Monit Assess; 2023 Nov; 195(12):1444. PubMed ID: 37946053 [TBL] [Abstract][Full Text] [Related]
19. Specific model for the estimation of methane emission from municipal solid waste landfills in India. Kumar S; Nimchuk N; Kumar R; Zietsman J; Ramani T; Spiegelman C; Kenney M Bioresour Technol; 2016 Sep; 216():981-7. PubMed ID: 27343450 [TBL] [Abstract][Full Text] [Related]
20. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites. Santos MM; van Elk AG; Romanel C J Environ Manage; 2015 Dec; 164():151-60. PubMed ID: 26363977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]