These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32564727)

  • 1. On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection-diffusion equations.
    Simonis S; Frank M; Krause MJ
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190400. PubMed ID: 32564727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods.
    Coreixas C; Wissocq G; Chopard B; Latt J
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190397. PubMed ID: 32564722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.
    Lallemand P; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann equation linear stability analysis: thermal and athermal models.
    Siebert DN; Hegele LA; Philippi PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026707. PubMed ID: 18352148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann model for simulating temperature-sensitive ferrofluids.
    Niu XD; Yamaguchi H; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046713. PubMed ID: 19518386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear discrete velocity model-based lattice Boltzmann flux solver for simulating acoustic propagation in fluids.
    Zhan N; Chen R; Song Q; You Y
    Phys Rev E; 2022 Jun; 105(6-2):065303. PubMed ID: 35854519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport.
    Perko J; Patel RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053309. PubMed ID: 25353916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boltzmann equation and hydrodynamic equations: their equilibrium and non-equilibrium behaviour.
    Verma MK
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190470. PubMed ID: 32564728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013304. PubMed ID: 28208379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids.
    Lallemand P; D'Humières D; Luo LS; Rubinstein R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021203. PubMed ID: 12636662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Boltzmann method for the fractional advection-diffusion equation.
    Zhou JG; Haygarth PM; Withers PJ; Macleod CJ; Falloon PD; Beven KJ; Ockenden MC; Forber KJ; Hollaway MJ; Evans R; Collins AL; Hiscock KM; Wearing C; Kahana R; Villamizar Velez ML
    Phys Rev E; 2016 Apr; 93():043310. PubMed ID: 27176431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations.
    Cui S; Hong N; Shi B; Chai Z
    Phys Rev E; 2016 Apr; 93():043311. PubMed ID: 27176432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma-induced catalysis: towards a numerical approach.
    Li H; Toschi F
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190396. PubMed ID: 32564723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient supersonic flow simulations using lattice Boltzmann methods based on numerical equilibria.
    Latt J; Coreixas C; Beny J; Parmigiani A
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190559. PubMed ID: 32833583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiple-relaxation-time collision model by Hermite expansion.
    Shan X; Li X; Shi Y
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200406. PubMed ID: 34455846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple-relaxation-time finite-difference lattice Boltzmann model for the nonlinear convection-diffusion equation.
    Chen X; Chai Z; Shang J; Shi B
    Phys Rev E; 2021 Sep; 104(3-2):035308. PubMed ID: 34654116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General propagation lattice Boltzmann model for nonlinear advection-diffusion equations.
    Guo X; Shi B; Chai Z
    Phys Rev E; 2018 Apr; 97(4-1):043310. PubMed ID: 29758771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature.
    Hosseini SA; Darabiha N; Thévenin D
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190399. PubMed ID: 32564724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourth-order multiple-relaxation-time lattice Boltzmann model and equivalent finite-difference scheme for one-dimensional convection-diffusion equations.
    Chen Y; Chai Z; Shi B
    Phys Rev E; 2023 May; 107(5-2):055305. PubMed ID: 37329033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.