BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32564734)

  • 21. Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae.
    Toh TH; Kayingo G; van der Merwe MJ; Kilian SG; Hallsworth JE; Hohmann S; Prior BA
    FEMS Yeast Res; 2001 Dec; 1(3):205-11. PubMed ID: 12702345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The zinc cluster proteins Upc2 and Ecm22 promote filamentation in Saccharomyces cerevisiae by sterol biosynthesis-dependent and -independent pathways.
    Woods K; Höfken T
    Mol Microbiol; 2016 Feb; 99(3):512-27. PubMed ID: 26448198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining mutations in the incoming and outgoing pheromone signal pathways causes a synergistic mating defect in Saccharomyces cerevisiae.
    Giot L; DeMattei C; Konopka JB
    Yeast; 1999 Jun; 15(9):765-80. PubMed ID: 10398345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM.
    Georgiev AG; Sullivan DP; Kersting MC; Dittman JS; Beh CT; Menon AK
    Traffic; 2011 Oct; 12(10):1341-55. PubMed ID: 21689253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of sterol uptake and transport in yeast.
    Jacquier N; Schneiter R
    J Steroid Biochem Mol Biol; 2012 Mar; 129(1-2):70-8. PubMed ID: 21145395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The yeast Saccharomyces cerevisiae Pdr16p restricts changes in ergosterol biosynthesis caused by the presence of azole antifungals.
    Šimová Z; Poloncová K; Tahotná D; Holič R; Hapala I; Smith AR; White TC; Griač P
    Yeast; 2013 Jun; 30(6):229-41. PubMed ID: 23606207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.
    Tong J; Manik MK; Im YJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):E856-E865. PubMed ID: 29339490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional regulation of ergosterol biosynthesis genes in response to iron deficiency.
    Jordá T; Barba-Aliaga M; Rozès N; Alepuz P; Martínez-Pastor MT; Puig S
    Environ Microbiol; 2022 Nov; 24(11):5248-5260. PubMed ID: 36382795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae.
    Wagner A; Grillitsch K; Leitner E; Daum G
    Biochim Biophys Acta; 2009 Feb; 1791(2):118-24. PubMed ID: 19111628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations in the nucleotide-binding domain of putative sterol importers Aus1 and Pdr11 selectively affect utilization of exogenous sterol species in yeast.
    Papay M; Klein C; Hapala I; Petriskova L; Kuchler K; Valachovic M
    Yeast; 2020 Jan; 37(1):5-14. PubMed ID: 31830308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cumulative mutations affecting sterol biosynthesis in the yeast Saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid profiles.
    Valachovic M; Bareither BM; Shah Alam Bhuiyan M; Eckstein J; Barbuch R; Balderes D; Wilcox L; Sturley SL; Dickson RC; Bard M
    Genetics; 2006 Aug; 173(4):1893-908. PubMed ID: 16702413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization of an alpha-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae.
    Mayrhofer S; Pöggeler S
    Eukaryot Cell; 2005 Apr; 4(4):661-72. PubMed ID: 15821126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytostatic effects of structurally different ginsenosides on yeast cells with altered sterol biosynthesis and transport.
    Sokolov SS; Volynsky PE; Zangieva OT; Severin FF; Glagoleva ES; Knorre DA
    Biochim Biophys Acta Biomembr; 2022 Oct; 1864(10):183993. PubMed ID: 35724740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites.
    Roelants FM; Chauhan N; Muir A; Davis JC; Menon AK; Levine TP; Thorner J
    Mol Biol Cell; 2018 Aug; 29(17):2128-2136. PubMed ID: 29927351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sterol trafficking between the endoplasmic reticulum and plasma membrane in yeast.
    Sullivan DP; Ohvo-Rekilä H; Baumann NA; Beh CT; Menon AK
    Biochem Soc Trans; 2006 Jun; 34(Pt 3):356-8. PubMed ID: 16709160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mutation in sphingolipid synthesis suppresses defects in yeast ergosterol metabolism.
    Valachovic M; Wilcox LI; Sturley SL; Bard M
    Lipids; 2004 Aug; 39(8):747-52. PubMed ID: 15638242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of Intracellular Sterol Transport in Yeast.
    Chauhan N; Jentsch JA; Menon AK
    Methods Mol Biol; 2019; 1949():115-136. PubMed ID: 30790253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae.
    Zweytick D; Leitner E; Kohlwein SD; Yu C; Rothblatt J; Daum G
    Eur J Biochem; 2000 Feb; 267(4):1075-82. PubMed ID: 10672016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nature of sterols affects plasma membrane behavior and yeast survival during dehydration.
    Dupont S; Beney L; Ferreira T; Gervais P
    Biochim Biophys Acta; 2011 Jun; 1808(6):1520-8. PubMed ID: 21081111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.