These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32564827)

  • 41. Antifreezing, Ionically Conductive, Transparent, and Antidrying Carboxymethyl Chitosan Self-Healing Hydrogels as Multifunctional Sensors.
    Gong X; Zhao C; Wang Y; Luo Y; Zhang C
    ACS Biomater Sci Eng; 2022 Aug; 8(8):3633-3643. PubMed ID: 35876253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Collagen-Poly(N-isopropylacrylamide) Hydrogels with Tunable Properties.
    Barnes AL; Genever PG; Rimmer S; Coles MC
    Biomacromolecules; 2016 Mar; 17(3):723-34. PubMed ID: 26686360
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and characterization of hybrid double network chitosan/poly(acrylic amide-acrylic acid) high toughness hydrogel through Al
    Jiang X; Xiang N; Wang J; Zhao Y; Hou L
    Carbohydr Polym; 2017 Oct; 173():701-706. PubMed ID: 28732916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly Elastic and Ultratough Hybrid Ionic-Covalent Hydrogels with Tunable Structures and Mechanics.
    Yang Y; Wang X; Yang F; Wang L; Wu D
    Adv Mater; 2018 May; 30(18):e1707071. PubMed ID: 29577453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction and characterization of Mesona chinensis polysaccharide-chitosan hydrogels, role of chitosan deacetylation degree.
    Yang J; Shen M; Luo Y; Wu T; Wen H; Xie J
    Carbohydr Polym; 2021 Apr; 257():117608. PubMed ID: 33541640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors.
    Tong R; Chen G; Pan D; Qi H; Li R; Tian J; Lu F; He M
    Biomacromolecules; 2019 May; 20(5):2096-2104. PubMed ID: 30995834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High strength of hybrid double-network hydrogels imparted by inter-network ionic bonds.
    Zhao X; Liang J; Shan G; Pan P
    J Mater Chem B; 2019 Jan; 7(2):324-333. PubMed ID: 32254557
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking.
    Moura MJ; Faneca H; Lima MP; Gil MH; Figueiredo MM
    Biomacromolecules; 2011 Sep; 12(9):3275-84. PubMed ID: 21774479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microgel-Crosslinked Thermo-Responsive Hydrogel Actuators with High Mechanical Properties and Rapid Response.
    Yang Y; Xiao Y; Wu X; Deng J; Wei R; Liu A; Chai H; Wang R
    Macromol Rapid Commun; 2024 Apr; 45(8):e2300643. PubMed ID: 38225681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of ethylene glycol dimethacrylate on swelling and on metformin hydrochloride release behavior of chemically crosslinked pH-sensitive acrylic acid-polyvinyl alcohol hydrogel.
    Akhtar MF; Ranjha NM; Hanif M
    Daru; 2015 Aug; 23(1):41. PubMed ID: 26283081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combination of acid treatment and dual network fabrication to stretchable cellulose based hydrogels with tunable properties.
    Niu L; Zhang D; Liu Y; Zhou X; Wang J; Wang C; Chu F
    Int J Biol Macromol; 2020 Mar; 147():1-9. PubMed ID: 31917976
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High strength pure chitosan hydrogels via double crosslinking strategy.
    Huang L; Chu Y; Zhang L; Liu X; Hao W; Chen Y; Dai J
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-step of ionic liquid-assisted stabilization and dispersion: Exfoliated graphene and its applications in stimuli-responsive conductive hydrogels based on chitosan.
    Zhang X; Zhang H; Lv X; Xie T; Chen J; Fang D; Yi S
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132699. PubMed ID: 38824103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The synthesis and in vitro characterization of the mucoadhesion and swelling of poly(acrylic acid) hydrogels.
    Warren SJ; Kellaway IW
    Pharm Dev Technol; 1998 May; 3(2):199-208. PubMed ID: 9653757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair.
    Gan S; Lin W; Zou Y; Xu B; Zhang X; Zhao J; Rong J
    Carbohydr Polym; 2020 Feb; 229():115523. PubMed ID: 31826442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Network structure and enzymatic degradation of chitosan hydrogels determined by crosslinking methods.
    Ahn J; Ryu J; Song G; Whang M; Kim J
    Carbohydr Polym; 2019 Aug; 217():160-167. PubMed ID: 31079673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Freeze-Thawing Method to Prepare Chitosan-Poly(vinyl alcohol) Hydrogels Without Crosslinking Agents and Diflunisal Release Studies.
    Figueroa-Pizano MD; Vélaz I; Martínez-Barbosa ME
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32009635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust, tough and anti-fatigue cationic latex composite hydrogels based on dual physically cross-linked networks.
    Gu S; Duan L; Ren X; Gao GH
    J Colloid Interface Sci; 2017 Apr; 492():119-126. PubMed ID: 28081456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy.
    Lu J; Hu O; Hou L; Ye D; Weng S; Jiang X
    Int J Biol Macromol; 2022 Nov; 221():1002-1011. PubMed ID: 36113584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel.
    Tsao CT; Chang CH; Lin YY; Wu MF; Wang JL; Han JL; Hsieh KH
    Carbohydr Res; 2010 Aug; 345(12):1774-80. PubMed ID: 20598293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.