These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32564843)

  • 1. Gelation, flame retardancy, and physical properties of phosphorylated microcrystalline cellulose aerogels.
    Niu F; Wu N; Yu J; Ma X
    Carbohydr Polym; 2020 Aug; 242():116422. PubMed ID: 32564843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate.
    Farooq M; Sipponen MH; Seppälä A; Österberg M
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27407-27415. PubMed ID: 30033716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lightweight, flame retardant Janus carboxymethyl cellulose aerogel with fire-warning properties for smart sensor.
    Liu Y; Cheng F; Li K; Yao J; Li X; Xia Y
    Carbohydr Polym; 2024 Mar; 328():121730. PubMed ID: 38220348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites.
    Zhou Z; Yang Y; Han Y; Guo Q; Zhang X; Lu C
    Carbohydr Polym; 2017 Dec; 177():241-248. PubMed ID: 28962765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame Retardant Functionalization of Microcrystalline Cellulose by Phosphorylation Reaction with Phytic Acid.
    Yuan HB; Tang RC; Yu CB
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy.
    Guo L; Chen Z; Lyu S; Fu F; Wang S
    Carbohydr Polym; 2018 Jan; 179():333-340. PubMed ID: 29111059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation.
    Luo X; Shen J; Ma Y; Liu L; Meng R; Yao J
    Carbohydr Polym; 2020 Feb; 230():115623. PubMed ID: 31887931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.
    Valo H; Arola S; Laaksonen P; Torkkeli M; Peltonen L; Linder MB; Serimaa R; Kuga S; Hirvonen J; Laaksonen T
    Eur J Pharm Sci; 2013 Sep; 50(1):69-77. PubMed ID: 23500041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient flame-retardant and low-smoke-toxicity poly(vinyl alcohol)/alginate/ montmorillonite composite aerogels by two-step crosslinking strategy.
    Wu N; Niu F; Lang W; Xia M
    Carbohydr Polym; 2019 Oct; 221():221-230. PubMed ID: 31227162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose aerogels from aqueous alkali hydroxide-urea solution.
    Cai J; Kimura S; Wada M; Kuga S; Zhang L
    ChemSusChem; 2008; 1(1-2):149-54. PubMed ID: 18605678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, Properties, and Mechanism of Flame-Retardant Poly(vinyl alcohol) Aerogels Based on the Multi-Directional Freezing Method.
    Wei J; Zhao C; Hou Z; Li Y; Li H; Xiang D; Wu Y; Que Y
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile approach to light weight, high porosity cellulose aerogels.
    Geng H
    Int J Biol Macromol; 2018 Oct; 118(Pt A):921-931. PubMed ID: 29964109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing the Flexibility of Lightweight Cellulose Nanofiber Composite Aerogels for Superior Thermal Insulation and Fire Protection.
    Bhardwaj S; Singh S; Dev K; Chhajed M; Maji PK
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):18075-18089. PubMed ID: 38560888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seaweed-Derived Alginate-Cellulose Nanofiber Aerogel for Insulation Applications.
    Berglund L; Nissilä T; Sivaraman D; Komulainen S; Telkki VV; Oksman K
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34899-34909. PubMed ID: 34255967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels.
    Kuang Y; Chen L; Zhai J; Zhao S; Xiao Q; Wu K; Qiao D; Jiang F
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33466715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile slow-gel method for bulk Al-doped carboxymethyl cellulose aerogels with excellent flame retardancy.
    Hu W; Lu L; Li Z; Shao L
    Carbohydr Polym; 2019 Mar; 207():352-361. PubMed ID: 30600017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel aerogels based on supramolecular G-quadruplex assembly with intrinsic flame retardancy and thermal insulation.
    Yang L; Zhang H; Wang C; Jiao Y; Pang X; Xu J; Ma H
    J Colloid Interface Sci; 2024 Oct; 672():618-630. PubMed ID: 38861849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Insulation and Flame Retardancy of the Hydroxyapatite Nanorods/Sodium Alginate Composite Aerogel with a Double-Crosslinked Structure.
    Zhu J; Li X; Li D; Jiang C
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45822-45831. PubMed ID: 36166410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy.
    Jin H; Zhou X; Xu T; Dai C; Gu Y; Yun S; Hu T; Guan G; Chen J
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11815-11824. PubMed ID: 32092256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient Pressure Drying to Construct Cellulose Acetate/Benzoxazine Hybrid Aerogels with Flame Retardancy, Excellent Thermal Stability, and Superior Mechanical Strength Resistance to Cryogenic Temperature.
    Zhang S; Wang Z; Hu Y; Ji H; Xiao Y; Wang J; Xu G; Ding F
    Biomacromolecules; 2022 Dec; 23(12):5056-5064. PubMed ID: 36331293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.