These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 32564970)
1. Development of Machine Learning Algorithms to Predict Patient Dissatisfaction After Primary Total Knee Arthroplasty. Kunze KN; Polce EM; Sadauskas AJ; Levine BR J Arthroplasty; 2020 Nov; 35(11):3117-3122. PubMed ID: 32564970 [TBL] [Abstract][Full Text] [Related]
2. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry? El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760 [TBL] [Abstract][Full Text] [Related]
3. Development of Machine Learning Algorithms to Predict Clinically Meaningful Improvement for the Patient-Reported Health State After Total Hip Arthroplasty. Kunze KN; Karhade AV; Sadauskas AJ; Schwab JH; Levine BR J Arthroplasty; 2020 Aug; 35(8):2119-2123. PubMed ID: 32265141 [TBL] [Abstract][Full Text] [Related]
4. Development of machine learning algorithms to predict achievement of minimal clinically important difference for the KOOS-PS following total knee arthroplasty. Katakam A; Karhade AV; Collins A; Shin D; Bragdon C; Chen AF; Melnic CM; Schwab JH; Bedair HS J Orthop Res; 2022 Apr; 40(4):808-815. PubMed ID: 34275163 [TBL] [Abstract][Full Text] [Related]
5. Development of supervised machine learning algorithms for prediction of satisfaction at 2 years following total shoulder arthroplasty. Polce EM; Kunze KN; Fu MC; Garrigues GE; Forsythe B; Nicholson GP; Cole BJ; Verma NN J Shoulder Elbow Surg; 2021 Jun; 30(6):e290-e299. PubMed ID: 33010437 [TBL] [Abstract][Full Text] [Related]
7. Development and internal validation of machine learning algorithms for predicting complications after primary total hip arthroplasty. Kunze KN; Karhade AV; Polce EM; Schwab JH; Levine BR Arch Orthop Trauma Surg; 2023 Apr; 143(4):2181-2188. PubMed ID: 35508549 [TBL] [Abstract][Full Text] [Related]
8. The utility of machine learning algorithms for the prediction of patient-reported outcome measures following primary hip and knee total joint arthroplasty. Klemt C; Uzosike AC; Esposito JG; Harvey MJ; Yeo I; Subih M; Kwon YM Arch Orthop Trauma Surg; 2023 Apr; 143(4):2235-2245. PubMed ID: 35767040 [TBL] [Abstract][Full Text] [Related]
9. The Prevalence and Predictors of Patient Dissatisfaction 5-years Following Primary Total Knee Arthroplasty. Ayers DC; Yousef M; Zheng H; Yang W; Franklin PD J Arthroplasty; 2022 Jun; 37(6S):S121-S128. PubMed ID: 35227816 [TBL] [Abstract][Full Text] [Related]
10. Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting Clinically Significant Functional Improvement in a Mixed Population of Primary Hip Arthroscopy. Kunze KN; Polce EM; Nwachukwu BU; Chahla J; Nho SJ Arthroscopy; 2021 May; 37(5):1488-1497. PubMed ID: 33460708 [TBL] [Abstract][Full Text] [Related]
11. Factors contributing to 1-year dissatisfaction after total knee arthroplasty: a nomogram prediction model. Muertizha M; Cai X; Ji B; Aimaiti A; Cao L J Orthop Surg Res; 2022 Jul; 17(1):367. PubMed ID: 35902950 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Algorithms Predict Prolonged Opioid Use in Opioid-Naïve Primary Hip Arthroscopy Patients. Kunze KN; Polce EM; Alter TD; Nho SJ J Am Acad Orthop Surg Glob Res Rev; 2021 May; 5(5):e21.00093-8. PubMed ID: 34032690 [TBL] [Abstract][Full Text] [Related]
13. Development of a machine learning algorithm to identify surgical candidates for hip and knee arthroplasty without in-person evaluation. Crawford AM; Karhade AV; Agaronnik ND; Lightsey HM; Xiong GX; Schwab JH; Schoenfeld AJ; Simpson AK Arch Orthop Trauma Surg; 2023 Sep; 143(9):5985-5992. PubMed ID: 36905425 [TBL] [Abstract][Full Text] [Related]
14. Internal and External Validation of the Generalizability of Machine Learning Algorithms in Predicting Non-home Discharge Disposition Following Primary Total Knee Joint Arthroplasty. Chen TL; Buddhiraju A; Seo HH; Subih MA; Tuchinda P; Kwon YM J Arthroplasty; 2023 Oct; 38(10):1973-1981. PubMed ID: 36764409 [TBL] [Abstract][Full Text] [Related]
16. Three groups of dissatisfied patients exist after total knee arthroplasty: early, persistent, and late. Clement ND; Bardgett M; Weir D; Holland J; Gerrand C; Deehan DJ Bone Joint J; 2018 Feb; 100-B(2):161-169. PubMed ID: 29437057 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty. Oosterhoff JHF; de Hond AAH; Peters RM; van Steenbergen LN; Sorel JC; Zijlstra WP; Poolman RW; Ring D; Jutte PC; Kerkhoffs GMMJ; Putter H; Steyerberg EW; Doornberg JN; Clin Orthop Relat Res; 2024 Aug; 482(8):1472-1482. PubMed ID: 38470976 [TBL] [Abstract][Full Text] [Related]
18. Patients With Femoral Neck Fractures Are at Risk for Conversion to Arthroplasty After Internal Fixation: A Machine-learning Algorithm. van de Kuit A; Oosterhoff JHF; Dijkstra H; Sprague S; Bzovsky S; Bhandari M; Swiontkowski M; Schemitsch EH; IJpma FFA; Poolman RW; Doornberg JN; Hendrickx LAM; Clin Orthop Relat Res; 2022 Dec; 480(12):2350-2360. PubMed ID: 35767811 [TBL] [Abstract][Full Text] [Related]
19. Comparison of machine learning techniques to predict unplanned readmission following total shoulder arthroplasty. Arvind V; London DA; Cirino C; Keswani A; Cagle PJ J Shoulder Elbow Surg; 2021 Feb; 30(2):e50-e59. PubMed ID: 32868011 [TBL] [Abstract][Full Text] [Related]
20. [Patient Satisfaction after Total Knee Arthroplasty. Analysis of Pre-Operative and Peri-Operative Parameters Influencing Results in 826 Patients]. Lošťák J; Gallo J; Zapletalová J Acta Chir Orthop Traumatol Cech; 2016; 83(2):94-101. PubMed ID: 27167423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]