These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 32565422)
1. Validation of a type 1 diabetes algorithm using electronic medical records and administrative healthcare data to study the population incidence and prevalence of type 1 diabetes in Ontario, Canada. Weisman A; Tu K; Young J; Kumar M; Austin PC; Jaakkimainen L; Lipscombe L; Aronson R; Booth GL BMJ Open Diabetes Res Care; 2020 Jun; 8(1):. PubMed ID: 32565422 [TBL] [Abstract][Full Text] [Related]
2. Prevalence and Incidence Trends of Attention Deficit/Hyperactivity Disorder in Children and Youth Aged 1-24 Years in Ontario, Canada: A Validation Study of Health Administrative Data Algorithms: Tendances de la prévalence et de l'incidence du trouble de déficit de l'attention/hyperactivité chez les enfants et les jeunes âgés de 1 à 24 ans, en Ontario, Canada: une étude de validation des algorithmes de données administratives de santé. Butt DA; Jaakkimainen L; Tu K Can J Psychiatry; 2024 May; 69(5):326-336. PubMed ID: 37960872 [TBL] [Abstract][Full Text] [Related]
3. Identification of Physician-Diagnosed Alzheimer's Disease and Related Dementias in Population-Based Administrative Data: A Validation Study Using Family Physicians' Electronic Medical Records. Jaakkimainen RL; Bronskill SE; Tierney MC; Herrmann N; Green D; Young J; Ivers N; Butt D; Widdifield J; Tu K J Alzheimers Dis; 2016 Aug; 54(1):337-49. PubMed ID: 27567819 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of an administrative data algorithm to estimate the disease burden and epidemiology of multiple sclerosis in Ontario, Canada. Widdifield J; Ivers NM; Young J; Green D; Jaakkimainen L; Butt DA; O'Connor P; Hollands S; Tu K Mult Scler; 2015 Jul; 21(8):1045-54. PubMed ID: 25392338 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of algorithms to classify type 1 and 2 diabetes according to age at diagnosis using electronic health records. Ke C; Stukel TA; Luk A; Shah BR; Jha P; Lau E; Ma RCW; So WY; Kong AP; Chow E; Chan JCN BMC Med Res Methodol; 2020 Feb; 20(1):35. PubMed ID: 32093635 [TBL] [Abstract][Full Text] [Related]
6. A validation study of administrative data algorithms to identify patients with Parkinsonism with prevalence and incidence trends. Butt DA; Tu K; Young J; Green D; Wang M; Ivers N; Jaakkimainen L; Lam R; Guttman M Neuroepidemiology; 2014; 43(1):28-37. PubMed ID: 25323155 [TBL] [Abstract][Full Text] [Related]
7. Development of algorithms to identify individuals with Neurofibromatosis type 1 within administrative data and electronic medical records in Ontario, Canada. Barnett C; Candido E; Chen B; Pequeno P; Parkin PC; Tu K Orphanet J Rare Dis; 2022 Aug; 17(1):321. PubMed ID: 36028856 [TBL] [Abstract][Full Text] [Related]
8. Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Hux JE; Ivis F; Flintoft V; Bica A Diabetes Care; 2002 Mar; 25(3):512-6. PubMed ID: 11874939 [TBL] [Abstract][Full Text] [Related]
9. Identification of Early Onset Dementia in Population-Based Health Administrative Data: A Validation Study Using Primary Care Electronic Medical Records. Jaakkimainen L; Duchen R; Lix L; Al-Azazi S; Yu B; Butt D; Park SB; Widdifield J J Alzheimers Dis; 2022; 89(4):1463-1472. PubMed ID: 36057820 [TBL] [Abstract][Full Text] [Related]
10. Validation of canadian health administrative data algorithms for estimating trends in the incidence and prevalence of osteoarthritis. Widdifield J; Jaakkimainen RL; Gatley JM; Hawker GA; Lix LM; Bernatsky S; Ravi B; Wasserstein D; Yu B; Tu K Osteoarthr Cartil Open; 2020 Dec; 2(4):100115. PubMed ID: 36474895 [TBL] [Abstract][Full Text] [Related]
11. Validation of international algorithms to identify adults with inflammatory bowel disease in health administrative data from Ontario, Canada. Benchimol EI; Guttmann A; Mack DR; Nguyen GC; Marshall JK; Gregor JC; Wong J; Forster AJ; Manuel DG J Clin Epidemiol; 2014 Aug; 67(8):887-96. PubMed ID: 24774473 [TBL] [Abstract][Full Text] [Related]
12. An administrative data validation study of the accuracy of algorithms for identifying rheumatoid arthritis: the influence of the reference standard on algorithm performance. Widdifield J; Bombardier C; Bernatsky S; Paterson JM; Green D; Young J; Ivers N; Butt DA; Jaakkimainen RL; Thorne JC; Tu K BMC Musculoskelet Disord; 2014 Jun; 15():216. PubMed ID: 24956925 [TBL] [Abstract][Full Text] [Related]
13. Identifying cases of congestive heart failure from administrative data: a validation study using primary care patient records. Schultz SE; Rothwell DM; Chen Z; Tu K Chronic Dis Inj Can; 2013 Jun; 33(3):160-6. PubMed ID: 23735455 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes. Ravaut M; Harish V; Sadeghi H; Leung KK; Volkovs M; Kornas K; Watson T; Poutanen T; Rosella LC JAMA Netw Open; 2021 May; 4(5):e2111315. PubMed ID: 34032855 [TBL] [Abstract][Full Text] [Related]
15. Validation of a health administrative data algorithm for assessing the epidemiology of diabetes in Canadian children. Guttmann A; Nakhla M; Henderson M; To T; Daneman D; Cauch-Dudek K; Wang X; Lam K; Hux J Pediatr Diabetes; 2010 Mar; 11(2):122-8. PubMed ID: 19500278 [TBL] [Abstract][Full Text] [Related]
16. Identifying diabetes cases from administrative data: a population-based validation study. Lipscombe LL; Hwee J; Webster L; Shah BR; Booth GL; Tu K BMC Health Serv Res; 2018 May; 18(1):316. PubMed ID: 29720153 [TBL] [Abstract][Full Text] [Related]
17. Identifying musculoskeletal conditions in electronic medical records: a prevalence and validation study using the Deliver Primary Healthcare Information (DELPHI) database. Ryan BL; Maddocks HL; McKay S; Petrella R; Terry AL; Stewart M BMC Musculoskelet Disord; 2019 May; 20(1):187. PubMed ID: 31053119 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of algorithms to identify newly diagnosed type 1 and type 2 diabetes in pediatric population using electronic medical records and claims data. Teltsch DY; Fazeli Farsani S; Swain RS; Kaspers S; Huse S; Cristaldi C; Nordstrom BL; Brodovicz KG Pharmacoepidemiol Drug Saf; 2019 Feb; 28(2):234-243. PubMed ID: 30677205 [TBL] [Abstract][Full Text] [Related]
19. Assessing the validity of administrative health data for the identification of children and youth with autism spectrum disorder in Ontario. Brooks JD; Arneja J; Fu L; Saxena FE; Tu K; Pinzaru VB; Anagnostou E; Nylen K; Saunders NR; Lu H; McLaughlin J; Bronskill SE Autism Res; 2021 May; 14(5):1037-1045. PubMed ID: 33694293 [TBL] [Abstract][Full Text] [Related]
20. Assessing the validity of using administrative data to identify patients with epilepsy. Tu K; Wang M; Jaakkimainen RL; Butt D; Ivers NM; Young J; Green D; Jetté N Epilepsia; 2014 Feb; 55(2):335-43. PubMed ID: 24417710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]