These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32565583)

  • 41. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanical loading of isolated cardiac muscle with a real-time computed Windkessel model of the vasculature impedance.
    Garrett AS; Pham T; Loiselle D; Han JC; Taberner A
    Physiol Rep; 2019 Sep; 7(17):e14184. PubMed ID: 31512409
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cardiac electromechanical models: from cell to organ.
    Trayanova NA; Rice JJ
    Front Physiol; 2011; 2():43. PubMed ID: 21886622
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study.
    Zhan HQ; Xia L; Shou GF; Zang YL; Liu F; Crozier S
    J Zhejiang Univ Sci B; 2014 Mar; 15(3):225-42. PubMed ID: 24599687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method.
    Gao H; Carrick D; Berry C; Griffith BE; Luo X
    IMA J Appl Math; 2014 Oct; 79(5):978-1010. PubMed ID: 27041786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lumped-Parameter and Finite Element Modeling of Heart Failure with Preserved Ejection Fraction.
    Rosalia L; Ozturk C; Roche ET
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33645575
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electromechanical wavebreak in a model of the human left ventricle.
    Keldermann RH; Nash MP; Gelderblom H; Wang VY; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H134-43. PubMed ID: 20400690
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [One-dimensional time-dependent model of the cardiac pacemaker activity induced by the mechanoelectric feedback in a thermo-electro-mechanical background].
    Collet A; Desaive T; Dauby PC
    Ann Cardiol Angeiol (Paris); 2012 Jun; 61(3):156-61. PubMed ID: 22681984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method.
    Watanabe H; Sugiura S; Kafuku H; Hisada T
    Biophys J; 2004 Sep; 87(3):2074-85. PubMed ID: 15345582
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative reconstruction of cardiac electromechanics in human myocardium: assembly of electrophysiologic and tension generation models.
    Sachse FB; Seemann G; Chaisaowong K; Weiss D
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S210-8. PubMed ID: 14760926
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A fully coupled computational fluid dynamics - agent-based model of atherosclerotic plaque development: Multiscale modeling framework and parameter sensitivity analysis.
    Corti A; Chiastra C; Colombo M; Garbey M; Migliavacca F; Casarin S
    Comput Biol Med; 2020 Mar; 118():103623. PubMed ID: 31999550
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting electromyographic signals under realistic conditions using a multiscale chemo-electro-mechanical finite element model.
    Mordhorst M; Heidlauf T; Röhrle O
    Interface Focus; 2015 Apr; 5(2):20140076. PubMed ID: 25844148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational Study to Identify the Effects of the KCNJ2 E299V Mutation in Cardiac Pumping Capacity.
    Jeong DU; Lee J; Lim KM
    Comput Math Methods Med; 2020; 2020():7194275. PubMed ID: 32328155
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative reconstruction of cardiac electromechanics in human myocardium: regional heterogeneity.
    Seemann G; Sachse FB; Weiss DL; Dössel O
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S219-28. PubMed ID: 14760927
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations.
    Reumann M; Fitch BG; Rayshubskiy A; Keller DU; Seemann G; Dossel O; Pitman MC; Rice JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2795-8. PubMed ID: 19964262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical discoordination increases continuously after the onset of left bundle branch block despite constant electrical dyssynchrony in a computational model of cardiac electromechanics and growth.
    Kerckhoffs RC; Omens JH; McCulloch AD
    Europace; 2012 Nov; 14 Suppl 5(Suppl 5):v65-v72. PubMed ID: 23104917
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method.
    Brocklehurst P; Adeniran I; Yang D; Sheng Y; Zhang H; Ye J
    Biomed Res Int; 2015; 2015():854953. PubMed ID: 26583141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting left ventricular contractile function via Gaussian process emulation in aortic-banded rats.
    Longobardi S; Lewalle A; Coveney S; Sjaastad I; Espe EKS; Louch WE; Musante CJ; Sher A; Niederer SA
    Philos Trans A Math Phys Eng Sci; 2020 Jun; 378(2173):20190334. PubMed ID: 32448071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.
    Pfeiffer ER; Tangney JR; Omens JH; McCulloch AD
    J Biomech Eng; 2014 Feb; 136(2):021007. PubMed ID: 24337452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.