These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32565621)

  • 1. Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations with applications to hematopoietic stem cell modeling.
    Mohammad M; Trounev A
    Chaos Solitons Fractals; 2020 Sep; 138():109991. PubMed ID: 32565621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dynamics of COVID-19 in the UAE based on fractional derivative modeling using Riesz wavelets simulation.
    Mohammad M; Trounev A; Cattani C
    Adv Differ Equ; 2021; 2021(1):115. PubMed ID: 33623526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haar wavelets method for solving class of coupled systems of linear fractional Fredholm integro-differential equations.
    Darweesh A; Al-Khaled K; Al-Yaqeen OA
    Heliyon; 2023 Sep; 9(9):e19717. PubMed ID: 37810092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biorthogonal wavelets and tight framelets from smoothed pseudo splines.
    Zhou J; Zheng H
    J Inequal Appl; 2017; 2017(1):166. PubMed ID: 28769548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Collocation Method for Numerical Solution of Nonlinear Delay Integro-Differential Equations for Wireless Sensor Network and Internet of Things.
    Amin R; Nazir S; García-Magariño I
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels.
    Sadri K; Amilo D; Hinçal E; Hosseini K; Salahshour S
    Heliyon; 2024 Mar; 10(5):e27260. PubMed ID: 38562493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative.
    Arshad S; Baleanu D; Huang J; Al Qurashi MM; Tang Y; Zhao Y
    Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient spline technique for solving time-fractional integro-differential equations.
    Abbas M; Aslam S; Abdullah FA; Riaz MB; Gepreel KA
    Heliyon; 2023 Sep; 9(9):e19307. PubMed ID: 37810099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Method Based on Framelets for Solving Fractional Volterra Integral Equations.
    Mohammad M; Trounev A; Cattani C
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pertinent approach to solve nonlinear fuzzy integro-differential equations.
    Narayanamoorthy S; Sathiyapriya SP
    Springerplus; 2016; 5():449. PubMed ID: 27119053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods.
    Saad KM; Khader MM; Gómez-Aguilar JF; Baleanu D
    Chaos; 2019 Feb; 29(2):023116. PubMed ID: 30823705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the dynamics of nonlocal coupled systems of fractional
    Ali KK; Raslan KR; Abd-Elall Ibrahim A; Mohamed MS
    Heliyon; 2024 Jul; 10(13):e33399. PubMed ID: 39040329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing complexities with composite operator and differential operators with non-singular kernel.
    Atangana A; Mekkaoui T
    Chaos; 2019 Feb; 29(2):023103. PubMed ID: 30823732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Numerical Scheme for Solving a Fractional-Order System of Delay Differential Equations.
    Kumar M
    Int J Appl Comput Math; 2022; 8(5):262. PubMed ID: 36185949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the gap between models based on ordinary, delayed, and fractional differentials equations through integral kernels.
    Zeraick Monteiro N; Weber Dos Santos R; Rodrigues Mazorche S
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2322424121. PubMed ID: 38696465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid variable-step computation of dynamic convolutions and Volterra-type integro-differential equations: RK45 Fehlberg, RK4.
    Ndi Azese M
    Heliyon; 2024 Jul; 10(13):e33737. PubMed ID: 39071703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Solutions of Variable Coefficient Higher-Order Partial Differential Equations Arising in Beam Models.
    Ghafoor A; Haq S; Hussain M; Abdeljawad T; Alqudah MA
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. II. Construction and optimization.
    Poirier B; Salam A
    J Chem Phys; 2004 Jul; 121(4):1690-703. PubMed ID: 15260720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations.
    Jafari H; Nemati S; Ganji RM
    Adv Differ Equ; 2021; 2021(1):435. PubMed ID: 34630543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on fractional COVID-19 disease model by using Hermite wavelets.
    Kumar S; Kumar R; Momani S; Hadid S
    Math Methods Appl Sci; 2021 Feb; ():. PubMed ID: 33821070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.