These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32565624)

  • 21. Stability analysis and simulation of the novel Corornavirus mathematical model via the Caputo fractional-order derivative: A case study of Algeria.
    Moussa YEH; Boudaoui A; Ullah S; Bozkurt F; Abdeljawad T; Alqudah MA
    Results Phys; 2021 Jul; 26():104324. PubMed ID: 34055583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lyapunov Exponents of a Discontinuous 4D Hyperchaotic System of Integer or Fractional Order.
    Danca MF
    Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance.
    Matouk AE
    Chaos Solitons Fractals; 2020 Nov; 140():110257. PubMed ID: 32904626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability analysis and optimal control of a fractional-order generalized SEIR model for the COVID-19 pandemic.
    Xu C; Yu Y; Ren G; Sun Y; Si X
    Appl Math Comput; 2023 Jun; ():128210. PubMed ID: 38620200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Projections and fractional dynamics of COVID-19 with optimal control strategies.
    Nabi KN; Kumar P; Erturk VS
    Chaos Solitons Fractals; 2021 Apr; 145():110689. PubMed ID: 33531738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical assessment of monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach.
    Liu B; Farid S; Ullah S; Altanji M; Nawaz R; Wondimagegnhu Teklu S
    Sci Rep; 2023 Aug; 13(1):13550. PubMed ID: 37599330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms.
    Zeb A; Kumar P; Erturk VS; Sitthiwirattham T
    J King Saud Univ Sci; 2022 Feb; ():101914. PubMed ID: 35194351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fractal-fractional operator for COVID-19 (Omicron) variant outbreak with analysis and modeling.
    Farman M; Amin M; Akgül A; Ahmad A; Riaz MB; Ahmad S
    Results Phys; 2022 Aug; 39():105630. PubMed ID: 35664990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fractional mathematical model with nonlinear partial differential equations for transmission dynamics of severe acute respiratory syndrome coronavirus 2 infection.
    Thabet H; Kendre S
    Healthc Anal (N Y); 2023 Dec; 4():100209. PubMed ID: 37377904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation.
    Kammegne B; Oshinubi K; Babasola O; Peter OJ; Longe OB; Ogunrinde RB; Titiloye EO; Abah RT; Demongeot J
    Pathogens; 2023 Jan; 12(1):. PubMed ID: 36678436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A case study of Covid-19 epidemic in India via new generalised Caputo type fractional derivatives.
    Kumar P; Suat Erturk V
    Math Methods Appl Sci; 2021 Feb; ():. PubMed ID: 33821068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimal control of a fractional order model for the COVID - 19 pandemic.
    Baba BA; Bilgehan B
    Chaos Solitons Fractals; 2021 Mar; 144():110678. PubMed ID: 33551581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of a fractional order mathematical model for COVID-19 epidemic.
    Zhang Z; Zeb A; Egbelowo OF; Erturk VS
    Adv Differ Equ; 2020; 2020(1):420. PubMed ID: 32834820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical modeling and analysis of the novel Coronavirus using Atangana-Baleanu derivative.
    Alzahrani E; El-Dessoky MM; Baleanu D
    Results Phys; 2021 Jun; 25():104240. PubMed ID: 33936936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fractional-order model on vaccination and severity of COVID-19.
    Shah NH; Jayswal EN; Suthar AH
    Int J Dyn Control; 2023; 11(3):1363-1374. PubMed ID: 36065200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fractional-order differential equation model of COVID-19 infection of epithelial cells.
    Chatterjee AN; Ahmad B
    Chaos Solitons Fractals; 2021 Jun; 147():110952. PubMed ID: 33967407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fractional-order model for the novel coronavirus (COVID-19) outbreak.
    Rajagopal K; Hasanzadeh N; Parastesh F; Hamarash II; Jafari S; Hussain I
    Nonlinear Dyn; 2020; 101(1):711-718. PubMed ID: 32836806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamical behaviours and stability analysis of a generalized fractional model with a real case study.
    Baleanu D; Arshad S; Jajarmi A; Shokat W; Ghassabzade FA; Wali M
    J Adv Res; 2023 Jun; 48():157-173. PubMed ID: 36049735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fractional order mathematical modeling of COVID-19 transmission.
    Ahmad S; Ullah A; Al-Mdallal QM; Khan H; Shah K; Khan A
    Chaos Solitons Fractals; 2020 Oct; 139():110256. PubMed ID: 32905156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
    Taghizadeh L; Karimi A; Heitzinger C
    Comput Biol Med; 2020 Oct; 125():104011. PubMed ID: 33091766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.