BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32565674)

  • 1. PSI-MOUSE: Predicting Mouse Pseudouridine Sites From Sequence and Genome-Derived Features.
    Song B; Chen K; Tang Y; Ma J; Meng J; Wei Z
    Evol Bioinform Online; 2020; 16():1176934320925752. PubMed ID: 32565674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PIANO: A Web Server for Pseudouridine-Site (Ψ) Identification and Functional Annotation.
    Song B; Tang Y; Wei Z; Liu G; Su J; Meng J; Chen K
    Front Genet; 2020; 11():88. PubMed ID: 32226440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudouridine Identification and Functional Annotation with PIANO.
    Yao J; Hao C; Chen K; Meng J; Song B
    Methods Mol Biol; 2023; 2624():153-162. PubMed ID: 36723815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PseUI: Pseudouridine sites identification based on RNA sequence information.
    He J; Fang T; Zhang Z; Huang B; Zhu X; Xiong Y
    BMC Bioinformatics; 2018 Aug; 19(1):306. PubMed ID: 30157750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is There Any Sequence Feature in the RNA Pseudouridine Modification Prediction Problem?
    Dou L; Li X; Ding H; Xu L; Xiang H
    Mol Ther Nucleic Acids; 2020 Mar; 19():293-303. PubMed ID: 31865116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PPUS: a web server to predict PUS-specific pseudouridine sites.
    Li YH; Zhang G; Cui Q
    Bioinformatics; 2015 Oct; 31(20):3362-4. PubMed ID: 26076723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.
    Chen K; Wei Z; Zhang Q; Wu X; Rong R; Lu Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2019 Apr; 47(7):e41. PubMed ID: 30993345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XG-PseU: an eXtreme Gradient Boosting based method for identifying pseudouridine sites.
    Liu K; Chen W; Lin H
    Mol Genet Genomics; 2020 Jan; 295(1):13-21. PubMed ID: 31392406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PseU-ST: A new stacked ensemble-learning method for identifying RNA pseudouridine sites.
    Zhang X; Wang S; Xie L; Zhu Y
    Front Genet; 2023; 14():1121694. PubMed ID: 36741328
    [No Abstract]   [Full Text] [Related]  

  • 11. iRNA-PseU: Identifying RNA pseudouridine sites.
    Chen W; Tang H; Ye J; Lin H; Chou KC
    Mol Ther Nucleic Acids; 2016; 5(7):e332. PubMed ID: 28427142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BID-seq for transcriptome-wide quantitative sequencing of mRNA pseudouridine at base resolution.
    Zhang LS; Ye C; Ju CW; Gao B; Feng X; Sun HL; Wei J; Yang F; Dai Q; He C
    Nat Protoc; 2024 Feb; 19(2):517-538. PubMed ID: 37968414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WHISTLE server: A high-accuracy genomic coordinate-based machine learning platform for RNA modification prediction.
    Liu L; Song B; Chen K; Zhang Y; de Magalhães JP; Rigden DJ; Lei X; Wei Z
    Methods; 2022 Jul; 203():378-382. PubMed ID: 34245870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PseU-Pred: An ensemble model for accurate identification of pseudouridine sites.
    Suleman MT; Khan YD
    Anal Biochem; 2023 Sep; 676():115247. PubMed ID: 37437648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porpoise: a new approach for accurate prediction of RNA pseudouridine sites.
    Li F; Guo X; Jin P; Chen J; Xiang D; Song J; Coin LJM
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis.
    Chen K; Song B; Tang Y; Wei Z; Xu Q; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D1396-D1404. PubMed ID: 33010174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WHISTLE: A Functionally Annotated High-Accuracy Map of Human m
    Xu Q; Chen K; Meng J
    Methods Mol Biol; 2021; 2284():519-529. PubMed ID: 33835461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MU-PseUDeep: A deep learning method for prediction of pseudouridine sites.
    Khan SM; He F; Wang D; Chen Y; Xu D
    Comput Struct Biotechnol J; 2020; 18():1877-1883. PubMed ID: 32774783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NanoMUD: Profiling of pseudouridine and N1-methylpseudouridine using Oxford Nanopore direct RNA sequencing.
    Zhang Y; Yan H; Wei Z; Hong H; Huang D; Liu G; Qin Q; Rong R; Gao P; Meng J; Ying B
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132433. PubMed ID: 38759861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites.
    Lv Z; Zhang J; Ding H; Zou Q
    Front Bioeng Biotechnol; 2020; 8():134. PubMed ID: 32175316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.