These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32565883)
1. A Global Inhomogeneous Intensity Clustering- (GINC-) Based Active Contour Model for Image Segmentation and Bias Correction. Feng C; Yang J; Lou C; Li W; Yu K; Zhao D Comput Math Methods Med; 2020; 2020():7595174. PubMed ID: 32565883 [TBL] [Abstract][Full Text] [Related]
2. A level set method based on domain transformation and bias correction for MRI brain tumor segmentation. Khosravanian A; Rahmanimanesh M; Keshavarzi P; Mozaffari S J Neurosci Methods; 2021 Mar; 352():109091. PubMed ID: 33515604 [TBL] [Abstract][Full Text] [Related]
3. A fast two-stage active contour model for intensity inhomogeneous image segmentation. Song Y; Peng G PLoS One; 2019; 14(4):e0214851. PubMed ID: 31002667 [TBL] [Abstract][Full Text] [Related]
4. Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity. Akram F; Garcia MA; Puig D PLoS One; 2017; 12(4):e0174813. PubMed ID: 28376124 [TBL] [Abstract][Full Text] [Related]
5. Segmentation of Intensity-Corrupted Medical Images Using Adaptive Weight-Based Hybrid Active Contours. Memon AA; Soomro S; Shahid MT; Munir A; Niaz A; Choi KN Comput Math Methods Med; 2020; 2020():6317415. PubMed ID: 33204300 [TBL] [Abstract][Full Text] [Related]
6. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model. Chen Y; Zhao B; Zhang J; Zheng Y Magn Reson Imaging; 2014 Sep; 32(7):941-55. PubMed ID: 24832358 [TBL] [Abstract][Full Text] [Related]
7. Adaptive segmentation of magnetic resonance images with intensity inhomogeneity using level set method. Liu L; Zhang Q; Wu M; Li W; Shang F Magn Reson Imaging; 2013 May; 31(4):567-74. PubMed ID: 23290480 [TBL] [Abstract][Full Text] [Related]
8. Active Contours Using Additive Local and Global Intensity Fitting Models for Intensity Inhomogeneous Image Segmentation. Soomro S; Akram F; Kim JH; Soomro TA; Choi KN Comput Math Methods Med; 2016; 2016():9675249. PubMed ID: 27800011 [TBL] [Abstract][Full Text] [Related]
9. Image-guided regularization level set evolution for MR image segmentation and bias field correction. Wang L; Pan C Magn Reson Imaging; 2014 Jan; 32(1):71-83. PubMed ID: 24239334 [TBL] [Abstract][Full Text] [Related]
10. An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation. Huang C; Zeng L PLoS One; 2015; 10(3):e0120399. PubMed ID: 25837416 [TBL] [Abstract][Full Text] [Related]
11. A fast level set method for inhomogeneous image segmentation with adaptive scale parameter. Huang G; Ji H; Zhang W Magn Reson Imaging; 2018 Oct; 52():33-45. PubMed ID: 29807107 [TBL] [Abstract][Full Text] [Related]
12. A multi-objective optimization approach for brain MRI segmentation using fuzzy entropy clustering and region-based active contour methods. Pham TX; Siarry P; Oulhadj H Magn Reson Imaging; 2019 Sep; 61():41-65. PubMed ID: 31108153 [TBL] [Abstract][Full Text] [Related]
13. Robust generative asymmetric GMM for brain MR image segmentation. Ji Z; Xia Y; Zheng Y Comput Methods Programs Biomed; 2017 Nov; 151():123-138. PubMed ID: 28946994 [TBL] [Abstract][Full Text] [Related]
14. Medical Image Segmentation Using Fruit Fly Optimization and Density Peaks Clustering. Zhu H; He H; Xu J; Fang Q; Wang W Comput Math Methods Med; 2018; 2018():3052852. PubMed ID: 30675176 [TBL] [Abstract][Full Text] [Related]
15. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. Li C; Huang R; Ding Z; Gatenby JC; Metaxas DN; Gore JC IEEE Trans Image Process; 2011 Jul; 20(7):2007-16. PubMed ID: 21518662 [TBL] [Abstract][Full Text] [Related]
16. Automated Robust Image Segmentation: Level Set Method Using Nonnegative Matrix Factorization with Application to Brain MRI. Dera D; Bouaynaya N; Fathallah-Shaykh HM Bull Math Biol; 2016 Jul; 78(7):1450-76. PubMed ID: 27417984 [TBL] [Abstract][Full Text] [Related]
17. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Wang L; Li C; Sun Q; Xia D; Kao CY Comput Med Imaging Graph; 2009 Oct; 33(7):520-31. PubMed ID: 19482457 [TBL] [Abstract][Full Text] [Related]
18. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field. Chen M; Yan Q; Qin M Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503 [TBL] [Abstract][Full Text] [Related]
19. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability. Cui W; Wang Y; Lei T; Fan Y; Feng Y Comput Math Methods Med; 2013; 2013():570635. PubMed ID: 24302974 [TBL] [Abstract][Full Text] [Related]
20. Segmentation of intensity inhomogeneous brain MR images using active contours. Akram F; Kim JH; Lim HU; Choi KN Comput Math Methods Med; 2014; 2014():194614. PubMed ID: 25143780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]