These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 32566759)

  • 1. Machine learning approaches to drug response prediction: challenges and recent progress.
    Adam G; Rampášek L; Safikhani Z; Smirnov P; Haibe-Kains B; Goldenberg A
    NPJ Precis Oncol; 2020; 4():19. PubMed ID: 32566759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning methods, databases and tools for drug combination prediction.
    Wu L; Wen Y; Leng D; Zhang Q; Dai C; Wang Z; Liu Z; Yan B; Zhang Y; Wang J; He S; Bo X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34477201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical intelligence: New machine learning techniques for predicting clinical drug response.
    Turki T; Wang JTL
    Comput Biol Med; 2019 Apr; 107():302-322. PubMed ID: 30771879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning methods for drug response prediction in cancer: Predominant and emerging trends.
    Partin A; Brettin TS; Zhu Y; Narykov O; Clyde A; Overbeek J; Stevens RL
    Front Med (Lausanne); 2023; 10():1086097. PubMed ID: 36873878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel machine learning-based approach for the computational functional assessment of pharmacogenomic variants.
    Pandi MT; Koromina M; Tsafaridis I; Patsilinakos S; Christoforou E; van der Spek PJ; Patrinos GP
    Hum Genomics; 2021 Aug; 15(1):51. PubMed ID: 34372920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Advancements in Cancer Combination Therapy Prediction.
    Flanary VL; Fisher JL; Wilk EJ; Howton TC; Lasseigne BN
    JCO Precis Oncol; 2023 Sep; 7():e2300261. PubMed ID: 37824797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated framework for identification of effective and synergistic anti-cancer drug combinations.
    Sharma A; Rani R
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850017. PubMed ID: 30304987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning in the prediction of cancer therapy.
    Rafique R; Islam SMR; Kazi JU
    Comput Struct Biotechnol J; 2021; 19():4003-4017. PubMed ID: 34377366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining.
    Vougas K; Sakellaropoulos T; Kotsinas A; Foukas GP; Ntargaras A; Koinis F; Polyzos A; Myrianthopoulos V; Zhou H; Narang S; Georgoulias V; Alexopoulos L; Aifantis I; Townsend PA; Sfikakis P; Fitzgerald R; Thanos D; Bartek J; Petty R; Tsirigos A; Gorgoulis VG
    Pharmacol Ther; 2019 Nov; 203():107395. PubMed ID: 31374225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MF-PCBA: Multifidelity High-Throughput Screening Benchmarks for Drug Discovery and Machine Learning.
    Buterez D; Janet JP; Kiddle SJ; Liò P
    J Chem Inf Model; 2023 May; 63(9):2667-2678. PubMed ID: 37058588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the Genome for Drug Response Prediction.
    Pepe G; Carrino C; Parca L; Helmer-Citterich M
    Methods Mol Biol; 2022; 2449():187-196. PubMed ID: 35507263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects.
    Fan K; Cheng L; Li L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34347041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects.
    Das P; Mazumder DH
    Artif Intell Rev; 2023 Feb; ():1-28. PubMed ID: 36819660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies.
    Sinha K; Ghosh N; Sil PC
    Chem Res Toxicol; 2023 Aug; 36(8):1174-1205. PubMed ID: 37561655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction.
    Tan X; Yu Y; Duan K; Zhang J; Sun P; Sun H
    Curr Top Med Chem; 2020; 20(21):1858-1867. PubMed ID: 32648840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning, pharmacogenomics, and clinical psychiatry: predicting antidepressant response in patients with major depressive disorder.
    Bobo WV; Van Ommeren B; Athreya AP
    Expert Rev Clin Pharmacol; 2022 Aug; 15(8):927-944. PubMed ID: 35968639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacovariome scanning using whole pharmacogene resequencing coupled with deep computational analysis and machine learning for clinical pharmacogenomics.
    Tafazoli A; Mikros J; Khaghani F; Alimardani M; Rafigh M; Hemmati M; Siamoglou S; Golińska AK; Kamiński KA; Niemira M; Miltyk W; Patrinos GP
    Hum Genomics; 2023 Jul; 17(1):62. PubMed ID: 37452347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques.
    Singh DP; Kaushik B
    Chem Biol Drug Des; 2023 Jan; 101(1):175-194. PubMed ID: 36303299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.