These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32566781)

  • 1. Engineering of new graphene-based materials as potential materials to assist near-infrared photothermal therapy cancer treatment.
    Cheung F
    Heliyon; 2020 Jun; 6(6):e04131. PubMed ID: 32566781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate.
    Kharche N; Nayak SK
    Nano Lett; 2011 Dec; 11(12):5274-8. PubMed ID: 22026533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of Near to Far Infrared Range Direct Band Gaps in Graphene: A First Principle Insight.
    Kumar J; Ansh ; Shrivastava M
    ACS Omega; 2021 Mar; 6(8):5619-5626. PubMed ID: 33681601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible to near-infrared photodetector with novel optoelectronic performance based on graphene/S-doped InSe heterostructure on h-BN substrate.
    Hao Q; Liu J; Dong W; Yi H; Ke Y; Tang S; Qi D; Zhang W
    Nanoscale; 2020 Oct; 12(37):19259-19266. PubMed ID: 32930698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Reaction-Induced Defect Engineering: Enhanced Visible and Near-Infrared Absorption of Wide Band Gap Metal Oxides with Abundant Oxygen Vacancies.
    Qi F; Yang Z; Zhang J; Wang Y; Qiu Q; Li H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55417-55425. PubMed ID: 33236881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of cancer photothermal therapy using near-infrared radiation and functionalized graphene nanosheets.
    Wang Y; Leng S; Huang J; Shu M; Papavassiliou DV
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3275. PubMed ID: 31680480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme.
    Sattar A; Moazzam U; Bashir AI; Reza A; Latif H; Usman A; Amjad RJ; Mubshrah A; Nasir A
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33601353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Approach to In Vitro Image-Guided Photothermal Therapy with Top-Down and Bottom-Up-Synthesized Graphene Quantum Dots.
    Lee B; Stokes GA; Valimukhametova A; Nguyen S; Gonzalez-Rodriguez R; Bhaloo A; Coffer J; Naumov AV
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Near-infrared excited graphene oxide/silver nitrate/chitosan coating for improving antibacterial properties of titanium implants].
    Wang Y; Xu Y; Zhang X; Liu J; Han J; Zhu S; Liang Y; Wu S; Cui Z; Lü W; Li Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Aug; 37(8):937-944. PubMed ID: 37586792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band Gap Engineering in an Efficient Solar-Driven Interfacial Evaporation System.
    Ying P; Li M; Yu F; Geng Y; Zhang L; He J; Zheng Y; Chen R
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32880-32887. PubMed ID: 32589006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Engineering of Corrole Radicals by Polycyclic Aromatic Fusion: Towards Open-Shell Near-Infrared Materials for Efficient Photothermal Therapy.
    Gao H; Zhi X; Wu F; Zhao Y; Cai F; Li P; Shen Z
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202309208. PubMed ID: 37590036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-based scaffolds for tissue engineering and photothermal therapy.
    Palmieri V; Spirito M; Papi M
    Nanomedicine (Lond); 2020 Jun; 15(14):1411-1417. PubMed ID: 32508272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cs
    Cao X; Kang L; Guo S; Zhang M; Lin Z; Gao J
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38648-38653. PubMed ID: 31577119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second Near-Infrared Conjugated Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy.
    Sun T; Dou JH; Liu S; Wang X; Zheng X; Wang Y; Pei J; Xie Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7919-7926. PubMed ID: 29424524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Co Defects in CoFe-Layered Double Hydroxide (CoFe-LDH) Derivatives for Highly Efficient Photothermal Cancer Therapy.
    Wang L; Xu SM; Yang X; He S; Guan S; Waterhouse GIN; Zhou S
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54916-54926. PubMed ID: 33233881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Me-graphene: a graphene allotrope with near zero Poisson's ratio, sizeable band gap, and high carrier mobility.
    Zhuo Z; Wu X; Yang J
    Nanoscale; 2020 Oct; 12(37):19359-19366. PubMed ID: 32940310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photothermal Sensing of Nano-Devices Made of Graphene Materials.
    Lu X; Yang L; Yang Z
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quinoid Conjugated Polymer Nanoparticles with NIR-II Absorption Peak Toward Efficient Photothermal Therapy.
    Li M; Li Z; Yu D; Wang M; Wang D; Wang B
    Chemistry; 2023 Mar; 29(14):e202202930. PubMed ID: 36484147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.