These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32566818)

  • 21. Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes.
    Yang Y; Xiong J; Lai S; Zhou R; Zhao M; Geng H; Zhang Y; Fang Y; Li C; Zhao J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6118-6125. PubMed ID: 30652854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrolyte decomposition on Li-metal surfaces from first-principles theory.
    Ebadi M; Brandell D; Araujo CM
    J Chem Phys; 2016 Nov; 145(20):204701. PubMed ID: 27908145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries.
    Young BT; Heskett DR; Nguyen CC; Nie M; Woicik JC; Lucht BL
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20004-11. PubMed ID: 26305165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solid electrolyte interphase formation by propylene carbonate reduction for lithium anode.
    Qian Q; Yang Y; Shao H
    Phys Chem Chem Phys; 2017 Nov; 19(42):28772-28780. PubMed ID: 29048094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of the reductive decomposition reaction of ethylene carbonate in lithium battery electrolyte: a ReaxFF molecular dynamics study.
    Gao J; He R; Luo KH
    Phys Chem Chem Phys; 2024 Aug; 26(33):22189-22207. PubMed ID: 39129480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvent oligomerization pathways facilitated by electrolyte additives during solid-electrolyte interphase formation.
    Gibson LD; Pfaendtner J
    Phys Chem Chem Phys; 2020 Sep; 22(37):21494-21503. PubMed ID: 32954392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduction mechanisms of additives on Si anodes of Li-ion batteries.
    Martínez de la Hoz JM; Balbuena PB
    Phys Chem Chem Phys; 2014 Aug; 16(32):17091-8. PubMed ID: 25005133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reductive reactions via excess Li in mixture electrolytes of Li ion batteries: an ab initio molecular dynamics study.
    Choi WI; Park MS; Shim Y; Kim DY; Kang YS; Lee HS; Koh M
    Phys Chem Chem Phys; 2019 Mar; 21(10):5489-5498. PubMed ID: 30783642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries.
    Santner HJ; Korepp C; Winter M; Besenhard JO; Möller KC
    Anal Bioanal Chem; 2004 May; 379(2):266-71. PubMed ID: 14968287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties.
    Zhang Z; Smith K; Jervis R; Shearing PR; Miller TS; Brett DJL
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35132-35141. PubMed ID: 32657567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isothermal microcalorimetry as a tool to study solid-electrolyte interphase formation in lithium-ion cells.
    Hall DS; Glazier SL; Dahn JR
    Phys Chem Chem Phys; 2016 Apr; 18(16):11383-90. PubMed ID: 27056253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal.
    Kamphaus EP; Gomez SA; Qin X; Shao M; Balbuena PB
    Chemphyschem; 2020 Jun; 21(12):1310-1317. PubMed ID: 32364643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonpassivated Silicon Anode Surface.
    Yin Y; Arca E; Wang L; Yang G; Schnabel M; Cao L; Xiao C; Zhou H; Liu P; Nanda J; Teeter G; Eichhorn B; Xu K; Burrell A; Ban C
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26593-26600. PubMed ID: 32412232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries.
    Xing L; Zheng X; Schroeder M; Alvarado J; von Wald Cresce A; Xu K; Li Q; Li W
    Acc Chem Res; 2018 Feb; 51(2):282-289. PubMed ID: 29381050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics investigation of reduced ethylene carbonate aggregation at the onset of solid electrolyte interphase formation.
    Boyer MJ; Hwang GS
    Phys Chem Chem Phys; 2019 Oct; 21(40):22449-22455. PubMed ID: 31580348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.
    Huff LA; Tavassol H; Esbenshade JL; Xing W; Chiang YM; Gewirth AA
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):371-80. PubMed ID: 26653886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
    Li Y; Leung K; Qi Y
    Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode.
    Liu S; Zhang Q; Wang X; Xu M; Li W; Lucht BL
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33719-33728. PubMed ID: 32608965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct
    Mozhzhukhina N; Flores E; Lundström R; Nyström V; Kitz PG; Edström K; Berg EJ
    J Phys Chem Lett; 2020 May; 11(10):4119-4123. PubMed ID: 32354215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.