BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 32566995)

  • 1. Recent progress in metabolic engineering of microbial formate assimilation.
    Mao W; Yuan Q; Qi H; Wang Z; Ma H; Chen T
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6905-6917. PubMed ID: 32566995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.
    Yishai O; Goldbach L; Tenenboim H; Lindner SN; Bar-Even A
    ACS Synth Biol; 2017 Sep; 6(9):1722-1731. PubMed ID: 28558223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks.
    Jiang W; Hernández Villamor D; Peng H; Chen J; Liu L; Haritos V; Ledesma-Amaro R
    Nat Chem Biol; 2021 Aug; 17(8):845-855. PubMed ID: 34312558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways.
    Bar-Even A
    Biochemistry; 2016 Jul; 55(28):3851-63. PubMed ID: 27348189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation.
    Claassens NJ; Satanowski A; Bysani VR; Dronsella B; Orsi E; Rainaldi V; Yilmaz S; Wenk S; Lindner SN
    Adv Biochem Eng Biotechnol; 2022; 180():299-350. PubMed ID: 35364693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
    Claassens NJ; He H; Bar-Even A
    Curr Issues Mol Biol; 2019; 33():237-248. PubMed ID: 31166196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production.
    Tuyishime P; Sinumvayo JP
    World J Microbiol Biotechnol; 2020 Jul; 36(8):118. PubMed ID: 32681457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical conversion of CO
    Jang J; Jeon BW; Kim YH
    Sci Rep; 2018 May; 8(1):7211. PubMed ID: 29739951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation.
    Turlin J; Dronsella B; De Maria A; Lindner SN; Nikel PI
    Metab Eng; 2022 Nov; 74():191-205. PubMed ID: 36328297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in the engineering of C1-utilizing microbes.
    Bae J; Jin S; Kang S; Cho BK; Oh MK
    Curr Opin Biotechnol; 2022 Dec; 78():102836. PubMed ID: 36334444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formate bio-economy.
    Yishai O; Lindner SN; Gonzalez de la Cruz J; Tenenboim H; Bar-Even A
    Curr Opin Chem Biol; 2016 Dec; 35():1-9. PubMed ID: 27459678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate.
    Kirst H; Ferlez BH; Lindner SN; Cotton CAR; Bar-Even A; Kerfeld CA
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35193962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic design and in vitro validation of novel one-carbon assimilation pathways.
    Yang X; Yuan Q; Luo H; Li F; Mao Y; Zhao X; Du J; Li P; Ju X; Zheng Y; Chen Y; Liu Y; Jiang H; Yao Y; Ma H; Ma Y
    Metab Eng; 2019 Dec; 56():142-153. PubMed ID: 31491544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unlocking the formate utilization of wild-type Yarrowia lipolytica through adaptive laboratory evolution.
    Chen Q; Chen Y; Hou Z; Ma Y; Huang J; Zhang Z; Chen Y; Yang X; Zhang Y; Zhao G
    Biotechnol J; 2024 Jun; 19(6):e2400290. PubMed ID: 38900053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
    Gonzalez de la Cruz J; Machens F; Messerschmidt K; Bar-Even A
    ACS Synth Biol; 2019 May; 8(5):911-917. PubMed ID: 31002757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the biological conversion of formate into crotonate in Cupriavidus necator.
    Collas F; Dronsella BB; Kubis A; Schann K; Binder S; Arto N; Claassens NJ; Kensy F; Orsi E
    Metab Eng; 2023 Sep; 79():49-65. PubMed ID: 37414134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering.
    Calvey CH; Sànchez I Nogué V; White AM; Kneucker CM; Woodworth SP; Alt HM; Eckert CA; Johnson CW
    Metab Eng; 2023 Jan; 75():78-90. PubMed ID: 36368470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO
    Bysani VR; Alam AS; Bar-Even A; Machens F
    Metab Eng; 2024 Jan; 81():167-181. PubMed ID: 38040111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic biology for CO
    Gong F; Cai Z; Li Y
    Sci China Life Sci; 2016 Nov; 59(11):1106-1114. PubMed ID: 27787752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.