These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32567300)

  • 1. Probing Ink-Powder Interactions during 3D Binder Jet Printing Using Time-Resolved X-ray Imaging.
    Barui S; Ding H; Wang Z; Zhao H; Marathe S; Mirihanage W; Basu B; Derby B
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34254-34264. PubMed ID: 32567300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder.
    Infanger S; Haemmerli A; Iliev S; Baier A; Stoyanov E; Quodbach J
    Int J Pharm; 2019 Jan; 555():198-206. PubMed ID: 30458260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time observation of binder jetting printing process using high-speed X-ray imaging.
    Parab ND; Barnes JE; Zhao C; Cunningham RW; Fezzaa K; Rollett AD; Sun T
    Sci Rep; 2019 Feb; 9(1):2499. PubMed ID: 30792454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spreading and infiltration of inkjet-printed polymer solution droplets on a porous substrate.
    Holman RK; Cima MJ; Uhland SA; Sachs E
    J Colloid Interface Sci; 2002 May; 249(2):432-40. PubMed ID: 16290618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of powder-binder interactions on 3D printability of pharmaceutical tablets using drop test methodology.
    Sen K; Mukherjee R; Sansare S; Halder A; Kashi H; Ma AWK; Chaudhuri B
    Eur J Pharm Sci; 2021 May; 160():105755. PubMed ID: 33588046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting of Inkjet Polymer Droplets on Porous Alumina Substrates.
    Zhou H; Chang R; Reichmanis E; Song Y
    Langmuir; 2017 Jan; 33(1):130-137. PubMed ID: 27936769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a pilot-scale HuskyJet binder jet 3D printer for additive manufacturing of pharmaceutical tablets.
    Chang SY; Jin J; Yan J; Dong X; Chaudhuri B; Nagapudi K; Ma AWK
    Int J Pharm; 2021 Aug; 605():120791. PubMed ID: 34116179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface adsorption effects in the inkjet printing of an aqueous polymer solution on a porous oxide ceramic substrate.
    Holman RK; Uhland SA; Cima MJ; Sachs E
    J Colloid Interface Sci; 2002 Mar; 247(2):266-74. PubMed ID: 16290465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a neonate X-ray phantom for 2D imaging applications using single-tone inkjet printing.
    Cruz-Bastida JP; Marshall EL; Reiser N; George J; Pearson EA; Feinstein KA; Al-Hallaq HA; Burton CS; Beaulieu D; MacDougall RD; Reiser I
    Med Phys; 2021 Sep; 48(9):4944-4954. PubMed ID: 34255871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drop-On-Powder 3D Printing of Tablets with an Anti-Cancer Drug, 5-Fluorouracil.
    Shi K; Tan DK; Nokhodchi A; Maniruzzaman M
    Pharmaceutics; 2019 Apr; 11(4):. PubMed ID: 30939760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs.
    Acosta-Vélez GF; Zhu TZ; Linsley CS; Wu BM
    Int J Pharm; 2018 Jul; 546(1-2):145-153. PubMed ID: 29705105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
    Zhou Z; Buchanan F; Mitchell C; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binder-jetting 3D printer capable of voxel-based control over deposited ink volume, adaptive layer thickness, and selective multi-pass printing.
    Persembe E; Parra-Cabrera C; Clasen C; Ameloot R
    Rev Sci Instrum; 2021 Dec; 92(12):125106. PubMed ID: 34972415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing Technology in Design of Pharmaceutical Products.
    Ameeduzzafar ; Alruwaili NK; Rizwanullah M; Abbas Bukhari SN; Amir M; Ahmed MM; Fazil M
    Curr Pharm Des; 2018; 24(42):5009-5018. PubMed ID: 30652636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-based 3D inkjet printing of an oral pharmaceutical dosage form.
    Cader HK; Rance GA; Alexander MR; Gonçalves AD; Roberts CJ; Tuck CJ; Wildman RD
    Int J Pharm; 2019 Jun; 564():359-368. PubMed ID: 30978485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brief data overview of differently heat treated binder jet printed samples made from argon atomized alloy 625 powder.
    Mostafaei A; Behnamian Y; Krimer YL; Stevens EL; Luo JL; Chmielus M
    Data Brief; 2016 Dec; 9():556-562. PubMed ID: 27752525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Reactive-Dye Chromophores and DEG on Ink-Jet Printing Performance.
    Zhang L; Fang K; Zhou H
    Molecules; 2020 May; 25(11):. PubMed ID: 32481525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosurface engineering through ink jet printing.
    Khan MS; Fon D; Li X; Tian J; Forsythe J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):441-7. PubMed ID: 19879112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.