BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32567469)

  • 1. Challenges of
    Perroud PF; Demko V
    Plant Signal Behav; 2020 Aug; 15(8):1780404. PubMed ID: 32567469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEK1 displays a strong subcellular polarity during Physcomitrella patens 3D growth.
    Perroud PF; Meyberg R; Demko V; Quatrano RS; Olsen OA; Rensing SA
    New Phytol; 2020 May; 226(4):1029-1041. PubMed ID: 31913503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens.
    Perroud PF; Demko V; Johansen W; Wilson RC; Olsen OA; Quatrano RS
    New Phytol; 2014 Aug; 203(3):794-804. PubMed ID: 24844771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DEK1 Calpain Linker Functions in Three-Dimensional Body Patterning in Physcomitrella patens.
    Johansen W; Ako AE; Demko V; Perroud PF; Rensing SA; Mekhlif AK; Olsen OA
    Plant Physiol; 2016 Oct; 172(2):1089-1104. PubMed ID: 27506240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of DEFECTIVE KERNEL1 loop function in three-dimensional body patterning in Physcomitrella patens.
    Demko V; Perroud PF; Johansen W; Delwiche CF; Cooper ED; Remme P; Ako AE; Kugler KG; Mayer KF; Quatrano R; Olsen OA
    Plant Physiol; 2014 Oct; 166(2):903-19. PubMed ID: 25185121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DEK1; missing piece in puzzle of plant development.
    Olsen OA; Perroud PF; Johansen W; Demko V
    Trends Plant Sci; 2015 Feb; 20(2):70-1. PubMed ID: 25612461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toc64 is not required for import of proteins into chloroplasts in the moss Physcomitrella patens.
    Rosenbaum Hofmann N; Theg SM
    Plant J; 2005 Sep; 43(5):675-87. PubMed ID: 16115065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis.
    Ludwig-Müller J; Jülke S; Bierfreund NM; Decker EL; Reski R
    New Phytol; 2009 Jan; 181(2):323-338. PubMed ID: 19032442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physcomitrella patens as a model for the study of chloroplast protein transport: conserved machineries between vascular and non-vascular plants.
    Hofmann NR; Theg SM
    Plant Mol Biol; 2003 Nov; 53(5):621-32. PubMed ID: 15010601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physcomitrella patens MAX2 characterization suggests an ancient role for this F-box protein in photomorphogenesis rather than strigolactone signalling.
    Lopez-Obando M; de Villiers R; Hoffmann B; Ma L; de Saint Germain A; Kossmann J; Coudert Y; Harrison CJ; Rameau C; Hills P; Bonhomme S
    New Phytol; 2018 Jul; 219(2):743-756. PubMed ID: 29781136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens: its conserved protein interactions in land plants.
    Parihar V; Arya D; Walia A; Tyagi V; Dangwal M; Verma V; Khurana R; Boora N; Kapoor S; Kapoor M
    Plant J; 2019 Jan; 97(2):221-239. PubMed ID: 30537172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants.
    Iwai M; Yokono M
    Curr Opin Plant Biol; 2017 Jun; 37():94-101. PubMed ID: 28445834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop?
    Holm K; Källman T; Gyllenstrand N; Hedman H; Lagercrantz U
    BMC Plant Biol; 2010 Jun; 10():109. PubMed ID: 20550695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory Mechanism of ABA and ABI3 on Vegetative Development in the Moss
    Zhao M; Li Q; Chen Z; Lv Q; Bao F; Wang X; He Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Proteomic Analysis of Wild-Type
    Luo W; Komatsu S; Abe T; Matsuura H; Takahashi K
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The moss Physcomitrella patens: a novel model system for plant development and genomic studies.
    Cove DJ; Perroud PF; Charron AJ; McDaniel SF; Khandelwal A; Quatrano RS
    Cold Spring Harb Protoc; 2009 Feb; 2009(2):pdb.emo115. PubMed ID: 20147063
    [No Abstract]   [Full Text] [Related]  

  • 18. Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1.
    Tian Q; Olsen L; Sun B; Lid SE; Brown RC; Lemmon BE; Fosnes K; Gruis DF; Opsahl-Sorteberg HG; Otegui MS; Olsen OA
    Plant Cell; 2007 Oct; 19(10):3127-45. PubMed ID: 17933905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens.
    Hiwatashi Y; Obara M; Sato Y; Fujita T; Murata T; Hasebe M
    Plant Cell; 2008 Nov; 20(11):3094-106. PubMed ID: 19028965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted protein-protein interactions in the moss Physcomitrella patens: a new bioinformatic resource.
    Schuette S; Piatkowski B; Corley A; Lang D; Geisler M
    BMC Bioinformatics; 2015 Mar; 16(1):89. PubMed ID: 25885037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.