These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32567617)

  • 1. Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study.
    Thangswamy M; Maheshwari P; Dutta D; Bera AK; Singh MN; Sinha AK; Yusuf SM; Pujari PK
    Phys Chem Chem Phys; 2020 Jul; 22(25):14309-14317. PubMed ID: 32567617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles.
    David RO; Marcolli C; Fahrni J; Qiu Y; Perez Sirkin YA; Molinero V; Mahrt F; Brühwiler D; Lohmann U; Kanji ZA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8184-8189. PubMed ID: 30948638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High cubicity of D
    Dutta D; Bera AK; Maheshwari P; Kolay S; Yusuf SM; Pujari PK
    Phys Chem Chem Phys; 2022 May; 24(19):11872-11881. PubMed ID: 35510632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of freezing of water in contact with mesoporous silicas MCM-41, SBA-15 and SBA-16: role of boundary water of pore outlets in freezing.
    Kittaka S; Ueda Y; Fujisaki F; Iiyama T; Yamaguchi T
    Phys Chem Chem Phys; 2011 Oct; 13(38):17222-33. PubMed ID: 21879058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melting and crystallization of ice in partially filled nanopores.
    Solveyra EG; de la Llave E; Scherlis DA; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14196-204. PubMed ID: 21863824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length.
    Kyakuno H; Matsuda K; Yahiro H; Inami Y; Fukuoka T; Miyata Y; Yanagi K; Maniwa Y; Kataura H; Saito T; Yumura M; Iijima S
    J Chem Phys; 2011 Jun; 134(24):244501. PubMed ID: 21721637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Determines the Ice Polymorph in Clouds?
    Hudait A; Molinero V
    J Am Chem Soc; 2016 Jul; 138(28):8958-67. PubMed ID: 27355985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study.
    Kittaka S; Takahara S; Matsumoto H; Wada Y; Satoh TJ; Yamaguchi T
    J Chem Phys; 2013 May; 138(20):204714. PubMed ID: 23742507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation of cubic ice under conditions relevant to Earth's atmosphere.
    Murray BJ; Knopf DA; Bertram AK
    Nature; 2005 Mar; 434(7030):202-5. PubMed ID: 15758996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water's size-dependent freezing to cubic ice.
    Johari GP
    J Chem Phys; 2005 May; 122(19):194504. PubMed ID: 16161594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of ice confined in silica nanopores.
    Mohammed S; Asgar H; Benmore CJ; Gadikota G
    Phys Chem Chem Phys; 2021 Jun; 23(22):12706-12717. PubMed ID: 34037014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastic ice in confined geometry: the evidence from neutron diffraction and NMR relaxation.
    Webber JB; Dore JC; Strange JH; Anderson R; Tohidi B
    J Phys Condens Matter; 2007 Oct; 19(41):415117. PubMed ID: 28192329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is it cubic? Ice crystallization from deeply supercooled water.
    Moore EB; Molinero V
    Phys Chem Chem Phys; 2011 Nov; 13(44):20008-16. PubMed ID: 22009135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proper structure of cubic ice confined in mesopores.
    Morishige K; Uematsu H
    J Chem Phys; 2005 Jan; 122(4):44711. PubMed ID: 15740287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density and anomalous thermal expansion of deeply cooled water confined in mesoporous silica investigated by synchrotron X-ray diffraction.
    Liu KH; Zhang Y; Lee JJ; Chen CC; Yeh YQ; Chen SH; Mou CY
    J Chem Phys; 2013 Aug; 139(6):064502. PubMed ID: 23947866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dependence of soot particle ice nucleation ability on its volatile content.
    Gao K; Koch HC; Zhou CW; Kanji ZA
    Environ Sci Process Impacts; 2022 Nov; 24(11):2043-2069. PubMed ID: 36043854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Ice/Water Confined in Nanoporous Alumina.
    Suzuki Y; Steinhart M; Graf R; Butt HJ; Floudas G
    J Phys Chem B; 2015 Nov; 119(46):14814-20. PubMed ID: 26511073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powder X-ray diffraction observations of ice crystals formed from disaccharide solutions.
    Uchida T; Takeya S
    Phys Chem Chem Phys; 2010 Dec; 12(45):15034-9. PubMed ID: 20957238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.