These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Density-dependent ecosystem service delivery under shifting temperatures by dung beetles. Gotcha N; Cuthbert RN; Machekano H; Nyamukondiwa C Sci Total Environ; 2022 Feb; 807(Pt 1):150575. PubMed ID: 34634717 [TBL] [Abstract][Full Text] [Related]
5. Effect of Chemical Pollution and Parasitism on Heat Tolerance in Dung Beetles (Coleoptera: Scarabaeinae). González-Tokman D; Gil-Pérez Y; Servín-Pastor M; Alvarado F; Escobar F; Baena-Díaz F; García-Robledo C; Martínez-M I J Econ Entomol; 2021 Feb; 114(1):462-467. PubMed ID: 33079989 [TBL] [Abstract][Full Text] [Related]
6. Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following Dynamic and Static Protocols. Chidawanyika F; Nyamukondiwa C; Strathie L; Fischer K PLoS One; 2017; 12(1):e0169371. PubMed ID: 28052099 [TBL] [Abstract][Full Text] [Related]
7. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Baudier KM; Mudd AE; Erickson SC; O'Donnell S J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696 [TBL] [Abstract][Full Text] [Related]
8. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal effects on dung beetle activities in island forests-home garden matrix in a tropical village landscape. Asha G; Manoj K; Megha PP; Sinu PA Sci Rep; 2021 Aug; 11(1):17398. PubMed ID: 34462466 [TBL] [Abstract][Full Text] [Related]
10. Temporal variation of thermal sensitivity to global warming: Acclimatization in the guitarist beetle, Megelenophorus americanus (Coleoptera: Tenebrionidae) from the Monte Desert. Aragon-Traverso JH; Piñeiro M; Olivares JPS; Sanabria EA Comp Biochem Physiol A Mol Integr Physiol; 2023 Nov; 285():111505. PubMed ID: 37619666 [TBL] [Abstract][Full Text] [Related]
11. Spatio-temporal modelling suggests that some dung beetle species (Coleoptera: Geotrupidae) may respond to global warming by boosting dung removal. Nervo B; Laini A; Roggero A; Palestrini C; Rolando A Sci Total Environ; 2024 Jan; 908():168127. PubMed ID: 37907105 [TBL] [Abstract][Full Text] [Related]
12. The role of diversity, body size and climate in dung removal: A correlative and experimental approach. Gebert F; Steffan-Dewenter I; Kronbach P; Peters MK J Anim Ecol; 2022 Nov; 91(11):2181-2191. PubMed ID: 35995757 [TBL] [Abstract][Full Text] [Related]
13. Low heat tolerance and high desiccation resistance in nocturnal bees and the implications for nocturnal pollination under climate change. Gonzalez VH; Manweiler R; Smith AR; Oyen K; Cardona D; Wcislo WT Sci Rep; 2023 Dec; 13(1):22320. PubMed ID: 38102400 [TBL] [Abstract][Full Text] [Related]
14. Dung beetle community assemblages in a southern African landscape: niche overlap between domestic and wild herbivore dung. Sands B; Mgidiswa N; Curson S; Nyamukondiwa C; Wall R Bull Entomol Res; 2022 Feb; 112(1):131-142. PubMed ID: 34412713 [TBL] [Abstract][Full Text] [Related]
15. Impacts of Exotic Pasture Establishment on Dung Beetle Assemblages (Coleoptera: Scarabaeidae: Scarabaeinae) in the Brazilian Cerrado. Correa CMA; Puker A; Abot AR Environ Entomol; 2020 Dec; 49(6):1335-1344. PubMed ID: 33159442 [TBL] [Abstract][Full Text] [Related]
16. Daily Activity Patterns and Thermal Tolerance of Three Sympatric Dung Beetle Species (Scarabaeidae: Scarabaeinae: Eucraniini) from the Monte Desert, Argentina. Giménez Gómez VC; Lomáscolo SB; Zurita GA; Ocampo F Neotrop Entomol; 2018 Dec; 47(6):821-827. PubMed ID: 29214545 [TBL] [Abstract][Full Text] [Related]
17. Eye and wing structure closely reflects the visual ecology of dung beetles. Tocco C; Dacke M; Byrne M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):211-221. PubMed ID: 30830308 [TBL] [Abstract][Full Text] [Related]
18. Variation in Larval Thermal Tolerance of Three Saproxylic Beetle Species. Lawhorn KA; Yanoviak SP Environ Entomol; 2022 Dec; 51(6):1218-1223. PubMed ID: 36346643 [TBL] [Abstract][Full Text] [Related]
19. Integrating thermal tolerance, water balance and morphology: An experimental study on dung beetles. Nervo B; Roggero A; Isaia M; Chamberlain D; Rolando A; Palestrini C J Therm Biol; 2021 Oct; 101():103093. PubMed ID: 34879911 [TBL] [Abstract][Full Text] [Related]
20. Decreases in beetle body size linked to climate change and warming temperatures. Tseng M; Kaur KM; Soleimani Pari S; Sarai K; Chan D; Yao CH; Porto P; Toor A; Toor HS; Fograscher K J Anim Ecol; 2018 May; 87(3):647-659. PubMed ID: 29380382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]