These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 32567835)
1. Plasmon-Enhanced Resonant Photoemission Using Atomically Thick Dielectric Coatings. Xiong X; Zhou Y; Luo Y; Li X; Bosman M; Ang LK; Zhang P; Wu L ACS Nano; 2020 Jul; 14(7):8806-8815. PubMed ID: 32567835 [TBL] [Abstract][Full Text] [Related]
2. Photoexcited Hot Electron Catalysis in Plasmon-Resonant Grating Structures with Platinum, Nickel, and Ruthenium Coatings. Aravind I; Wang YY; Wang Y; Li R; Cai Z; Zhao B; Zhang B; Weng S; Shahriar R; Cronin SB ACS Appl Mater Interfaces; 2024 Apr; 16(14):17393-17400. PubMed ID: 38563348 [TBL] [Abstract][Full Text] [Related]
3. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement. Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174 [TBL] [Abstract][Full Text] [Related]
4. Reducing the loss of electric field enhancement for plasmonic core-shell nanoparticle dimers by high refractive index dielectric coating. Zhai Y; Deng L; Chen Y; Wang N; Huang Y J Phys Condens Matter; 2020 Mar; 32(10):105001. PubMed ID: 31658445 [TBL] [Abstract][Full Text] [Related]
5. Nonadiabatic Nano-optical Tunneling of Photoelectrons in Plasmonic Near-Fields. Lovász B; Sándor P; Kiss GZ; Bánhegyi B; Rácz P; Pápa Z; Budai J; Prietl C; Krenn JR; Dombi P Nano Lett; 2022 Mar; 22(6):2303-2308. PubMed ID: 35240778 [TBL] [Abstract][Full Text] [Related]
6. Optimal design of composite nanowires for extended reach of surface plasmon-polaritons. Handapangoda D; Premaratne M; Rukhlenko ID; Jagadish C Opt Express; 2011 Aug; 19(17):16058-74. PubMed ID: 21934969 [TBL] [Abstract][Full Text] [Related]
7. Massive Enhancement of Optical Transmission across a Thin Metal Film via Wave Vector Matching in Grating-Coupled Surface Plasmon Resonance. Mahmood R; Johnson MB; Hillier AC Anal Chem; 2019 Jul; 91(13):8350-8357. PubMed ID: 31140785 [TBL] [Abstract][Full Text] [Related]
8. Effects of substrates on the nonlinear optical responses of two-dimensional materials. Zeng J; Li J; Li H; Dai Q; Tie S; Lan S Opt Express; 2015 Dec; 23(25):31817-27. PubMed ID: 26698973 [TBL] [Abstract][Full Text] [Related]
9. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods. Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166 [TBL] [Abstract][Full Text] [Related]
10. Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances. Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ Phys Chem Chem Phys; 2013 Jul; 15(26):10616-27. PubMed ID: 23417070 [TBL] [Abstract][Full Text] [Related]
11. Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography. Hurdax P; Kern CS; Boné TG; Haags A; Hollerer M; Egger L; Yang X; Kirschner H; Gottwald A; Richter M; Bocquet FC; Soubatch S; Koller G; Tautz FS; Sterrer M; Puschnig P; Ramsey MG ACS Nano; 2022 Oct; 16(10):17435-17443. PubMed ID: 36239301 [TBL] [Abstract][Full Text] [Related]
13. Enlarge the biologic coating-induced absorbance enhancement of Au-Ag bimetallic nanoshells by tuning the metal composition. Zhu J; Li X; Li JJ; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():571-577. PubMed ID: 28881282 [TBL] [Abstract][Full Text] [Related]
14. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays. Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of Long-Range Surface Plasmon Excitation, Dynamic Range and Figure of Merit Using a Dielectric Resonant Cavity. Suvarnaphaet P; Pechprasarn S Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30131469 [TBL] [Abstract][Full Text] [Related]
16. Metallic Nanodroplet Induced Coulomb Catalysis for Off-Resonant Plasmonic Enhancement of Photoemission in Semiconductors. Neogi A; Gryczynski K; Llopis A; Lin J; Main K; Shimada R; Wang Z; Lee J; Salamo G; Krokhin A ACS Omega; 2016 Jul; 1(1):19-28. PubMed ID: 31457115 [TBL] [Abstract][Full Text] [Related]
17. Plasmon-plasmon coupling probed by ultrafast, strong-field photoemission with <7 Å sensitivity. Budai J; Pápa Z; Márton I; Wróbel P; Stefaniuk T; Márton Z; Rácz P; Dombi P Nanoscale; 2018 Aug; 10(34):16261-16267. PubMed ID: 30124717 [TBL] [Abstract][Full Text] [Related]
18. Plasmonic field enhancement of individual nanoparticles by correlated scanning and photoemission electron microscopy. Peppernick SJ; Joly AG; Beck KM; Hess WP J Chem Phys; 2011 Jan; 134(3):034507. PubMed ID: 21261368 [TBL] [Abstract][Full Text] [Related]
19. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement. Deng YH; Yang ZJ; He J Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702 [TBL] [Abstract][Full Text] [Related]
20. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions. Tan S; Liu L; Dai Y; Ren J; Zhao J; Petek H J Am Chem Soc; 2017 May; 139(17):6160-6168. PubMed ID: 28402118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]