These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32567839)

  • 1. Molecular Mechanism of Light-Induced Conformational Switching of the LOV Domain in Aureochrome-1.
    Kobayashi I; Nakajima H; Hisatomi O
    Biochemistry; 2020 Jul; 59(28):2592-2601. PubMed ID: 32567839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimeric Structure of the Blue Light Sensor Protein Photozipper in the Active State.
    Ozeki K; Tsukuno H; Nagashima H; Hisatomi O; Mino H
    Biochemistry; 2018 Feb; 57(5):494-497. PubMed ID: 29261300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1.
    Nakatani Y; Hisatomi O
    Biochemistry; 2015 Jun; 54(21):3302-13. PubMed ID: 25932652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of light signals from the light-oxygen-voltage core via the hydrophobic region of the β-sheet surface in aureochrome-1.
    Nakajima H; Kobayashi I; Adachi Y; Hisatomi O
    Sci Rep; 2021 Jun; 11(1):11995. PubMed ID: 34099847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1.
    Hisatomi O; Takeuchi K; Zikihara K; Ookubo Y; Nakatani Y; Takahashi F; Tokutomi S; Kataoka H
    Plant Cell Physiol; 2013 Jan; 54(1):93-106. PubMed ID: 23220692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analyses of the equilibria among DNA complexes of a blue-light-regulated bZIP module, Photozipper.
    Nakatani Y; Hisatomi O
    Biophys Physicobiol; 2018; 15():8-17. PubMed ID: 29450110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence.
    Hisatomi O; Nakatani Y; Takeuchi K; Takahashi F; Kataoka H
    J Biol Chem; 2014 Jun; 289(25):17379-91. PubMed ID: 24790107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A light-regulated bZIP module, photozipper, induces the binding of fused proteins to the target DNA sequence in a blue light-dependent manner.
    Hisatomi O; Furuya K
    Photochem Photobiol Sci; 2015 Nov; 14(11):1998-2006. PubMed ID: 26441326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target Sequence Recognition by a Light-Activatable Basic Leucine Zipper Factor, Photozipper.
    Tateyama S; Kobayashi I; Hisatomi O
    Biochemistry; 2018 Nov; 57(47):6615-6623. PubMed ID: 30388362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavin-Radical Formation in the Light-Oxygen-Voltage-Sensing Domain of the Photozipper Blue-light Sensor Protein.
    Tsukuno H; Ozeki K; Kobayashi I; Hisatomi O; Mino H
    J Phys Chem B; 2018 Sep; 122(38):8819-8823. PubMed ID: 30157376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence.
    Heintz U; Schlichting I
    Elife; 2016 Jan; 5():e11860. PubMed ID: 26754770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Resolved Detection of Light-Induced Dimerization of Monomeric Aureochrome-1 and Change in Affinity for DNA.
    Akiyama Y; Nakasone Y; Nakatani Y; Hisatomi O; Terazima M
    J Phys Chem B; 2016 Aug; 120(30):7360-70. PubMed ID: 27404115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum.
    Banerjee A; Herman E; Kottke T; Essen LO
    Structure; 2016 Jan; 24(1):171-178. PubMed ID: 26688213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the diatom Phaeodactylum tricornutum.
    Herman E; Sachse M; Kroth PG; Kottke T
    Biochemistry; 2013 May; 52(18):3094-101. PubMed ID: 23621750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization processes for light-regulated transcription factor Photozipper visualized by high-speed atomic force microscopy.
    Tsuji A; Yamashita H; Hisatomi O; Abe M
    Sci Rep; 2022 Aug; 12(1):12903. PubMed ID: 35941201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain.
    Herman E; Kottke T
    Biochemistry; 2015 Feb; 54(7):1484-92. PubMed ID: 25621532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein.
    Nash AI; McNulty R; Shillito ME; Swartz TE; Bogomolni RA; Luecke H; Gardner KH
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9449-54. PubMed ID: 21606338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update on aureochromes: Phylogeny - mechanism - function.
    Kroth PG; Wilhelm C; Kottke T
    J Plant Physiol; 2017 Oct; 217():20-26. PubMed ID: 28797596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoreactions of aureochrome-1.
    Toyooka T; Hisatomi O; Takahashi F; Kataoka H; Terazima M
    Biophys J; 2011 Jun; 100(11):2801-9. PubMed ID: 21641326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics.
    Mitra D; Yang X; Moffat K
    Structure; 2012 Apr; 20(4):698-706. PubMed ID: 22483116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.