These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 325679)
1. Mathematical models for the control of pests and infectious diseases: a survey. Wickwire K Theor Popul Biol; 1977 Apr; 11(2):182-238. PubMed ID: 325679 [No Abstract] [Full Text] [Related]
2. On predicting extinction in simple population models. II. Numerical approximations. Smith RH; Mead R J Theor Biol; 1980 Feb; 82(3):525-35. PubMed ID: 7366229 [No Abstract] [Full Text] [Related]
3. On some Markov models of certain interacting populations. Kannan D Bull Math Biol; 1976; 38(06):723-38. PubMed ID: 1033007 [No Abstract] [Full Text] [Related]
4. Influence of stochastic perturbation on prey-predator systems. Rudnicki R; Pichór K Math Biosci; 2007 Mar; 206(1):108-19. PubMed ID: 16624335 [TBL] [Abstract][Full Text] [Related]
5. The stochastic modelling of kleptoparasitism using a Markov process. Broom M; Crowe ML; Fitzgerald MR; Rychtár J J Theor Biol; 2010 May; 264(2):266-72. PubMed ID: 20096290 [TBL] [Abstract][Full Text] [Related]
6. Pest management through continuous and impulsive control strategies. Zhang H; Jiao J; Chen L Biosystems; 2007; 90(2):350-61. PubMed ID: 17092633 [TBL] [Abstract][Full Text] [Related]
8. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence. Maliyoni M; Chirove F; Gaff HD; Govinder KS Bull Math Biol; 2017 Sep; 79(9):1999-2021. PubMed ID: 28707219 [TBL] [Abstract][Full Text] [Related]
9. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. O'Neill PD Math Biosci; 2002; 180():103-14. PubMed ID: 12387918 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Gilioli G; Pasquali S; Ruggeri F Math Biosci Eng; 2012 Jan; 9(1):75-96. PubMed ID: 22229397 [TBL] [Abstract][Full Text] [Related]
11. Optimal intervention for an epidemic model under parameter uncertainty. Clancy D; Green N Math Biosci; 2007 Feb; 205(2):297-314. PubMed ID: 17070866 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of successful natural enemies in models of biological control of insect pests. Beddington JR; Free CA; Lawton JH Nature; 1978 Jun; 273(5663):513-9. PubMed ID: 661961 [TBL] [Abstract][Full Text] [Related]
14. The deterministic limit of a stochastic logistic model with individual variation. McVinish R; Pollett PK Math Biosci; 2013 Jan; 241(1):109-14. PubMed ID: 23069635 [TBL] [Abstract][Full Text] [Related]
15. Optimal time to intervene: The case of measles child immunization. Chladná Z Math Biosci Eng; 2018 Feb; 15(1):323-335. PubMed ID: 29161838 [TBL] [Abstract][Full Text] [Related]
16. Equilibrium solutions for microscopic stochastic systems in population dynamics. Lachowicz M; Ryabukha T Math Biosci Eng; 2013 Jun; 10(3):777-86. PubMed ID: 23906149 [TBL] [Abstract][Full Text] [Related]
17. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Tanner MW; Sattenspiel L; Ntaimo L Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149 [TBL] [Abstract][Full Text] [Related]
18. Partially observed branching processes for stochastic epidemics. Panaretos VM J Math Biol; 2007 May; 54(5):645-68. PubMed ID: 17151881 [TBL] [Abstract][Full Text] [Related]
19. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Martín-Fernández L; Gilioli G; Lanzarone E; Miguez J; Pasquali S; Ruggeri F; Ruiz DP Math Biosci Eng; 2014 Jun; 11(3):573-97. PubMed ID: 24506552 [TBL] [Abstract][Full Text] [Related]
20. Probability of a disease outbreak in stochastic multipatch epidemic models. Lahodny GE; Allen LJ Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]