These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32567927)

  • 1. Robust Optical-Levitation-Based Metrology of Nanoparticle's Position and Mass.
    Zheng Y; Zhou LM; Dong Y; Qiu CW; Chen XD; Guo GC; Sun FW
    Phys Rev Lett; 2020 Jun; 124(22):223603. PubMed ID: 32567927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass measurement under medium vacuum in optically levitated nanoparticles based on Maxwell speed distribution law.
    Chen P; Li N; Chen X; Liang T; He P; Wang D; Hu H
    Opt Express; 2024 Jun; 32(12):21806-21819. PubMed ID: 38859526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing.
    Ricci F; Cuairan MT; Conangla GP; Schell AW; Quidant R
    Nano Lett; 2019 Oct; 19(10):6711-6715. PubMed ID: 30888180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuum levitation and motion control on chip.
    Melo B; T Cuairan M; Tomassi GFM; Meyer N; Quidant R
    Nat Nanotechnol; 2024 Jun; ():. PubMed ID: 38844665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle.
    Gieseler J; Spasenović M; Novotny L; Quidant R
    Phys Rev Lett; 2014 Mar; 112(10):103603. PubMed ID: 24679293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optomechanics with levitated particles.
    Millen J; Monteiro TS; Pettit R; Vamivakas AN
    Rep Prog Phys; 2020 Feb; 83(2):026401. PubMed ID: 31825901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration and energy measurement of optically levitated nanoparticle sensors.
    Hebestreit E; Frimmer M; Reimann R; Dellago C; Ricci F; Novotny L
    Rev Sci Instrum; 2018 Mar; 89(3):033111. PubMed ID: 29604723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Quantum Delocalization of a Levitated Nanoparticle Using Optimal Control: Applications for Force Sensing and Entangling via Weak Forces.
    Weiss T; Roda-Llordes M; Torrontegui E; Aspelmeyer M; Romero-Isart O
    Phys Rev Lett; 2021 Jul; 127(2):023601. PubMed ID: 34296896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending Vacuum Trapping to Absorbing Objects with Hybrid Paul-Optical Traps.
    Conangla GP; Rica RA; Quidant R
    Nano Lett; 2020 Aug; 20(8):6018-6023. PubMed ID: 32692184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between an Optically Levitated Nanoparticle and Its Thermal Image: Internal Thermometry via Displacement Sensing.
    Agrenius T; Gonzalez-Ballestero C; Maurer P; Romero-Isart O
    Phys Rev Lett; 2023 Mar; 130(9):093601. PubMed ID: 36930923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum metrology. Optically measuring force near the standard quantum limit.
    Schreppler S; Spethmann N; Brahms N; Botter T; Barrios M; Stamper-Kurn DM
    Science; 2014 Jun; 344(6191):1486-9. PubMed ID: 24970079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Chemical Nanoreactor Based on a Levitated Nanoparticle in Vacuum.
    Ricci F; Cuairan MT; Schell AW; Hebestreit E; Rica RA; Meyer N; Quidant R
    ACS Nano; 2022 Jun; 16(6):8677-8683. PubMed ID: 35580358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets.
    Price CJ; Donnelly TD; Giltrap S; Stuart NH; Parker S; Patankar S; Lowe HF; Drew D; Gumbrell ET; Smith RA
    Rev Sci Instrum; 2015 Mar; 86(3):033502. PubMed ID: 25832224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear optomechanical measurement of mechanical motion.
    Brawley GA; Vanner MR; Larsen PE; Schmid S; Boisen A; Bowen WP
    Nat Commun; 2016 Mar; 7():10988. PubMed ID: 26996234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Calibration of Displacement Sensors.
    Haitjema H
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31973080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of Kramers turnover with a levitated nanoparticle.
    Rondin L; Gieseler J; Ricci F; Quidant R; Dellago C; Novotny L
    Nat Nanotechnol; 2017 Dec; 12(12):1130-1133. PubMed ID: 29209016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of electrostatic levitation control system and oscillation method for material properties measurement.
    Xue S; Dong W; Chen D; Guo Q; He H; Yu J
    Rev Sci Instrum; 2021 Jun; 92(6):065111. PubMed ID: 34243565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron spin control of optically levitated nanodiamonds in vacuum.
    Hoang TM; Ahn J; Bang J; Li T
    Nat Commun; 2016 Jul; 7():12250. PubMed ID: 27432560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
    Fonseca PZ; Aranas EB; Millen J; Monteiro TS; Barker PF
    Phys Rev Lett; 2016 Oct; 117(17):173602. PubMed ID: 27824467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Multi-Position Calibration Method with Nonlinear Scale Factor for Inertial Measurement Units.
    Wang Z; Cheng X; Fu J
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31443328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.