These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32568313)

  • 1. Stepwise elucidation of fluorescence based sensing mechanisms considering picric acid as a model analyte.
    Tanwar AS; Meher N; Adil LR; Iyer PK
    Analyst; 2020 Jul; 145(14):4753-4767. PubMed ID: 32568313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical stabilization of terthiophene and its utilization as a new sensing element in the fabrication of monolayer-chemistry-based fluorescent sensing films.
    Liu T; Ding L; He G; Yang Y; Wang W; Fang Y
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1245-53. PubMed ID: 21449595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel portable smart phone sensing platform based on a supramolecular fluorescence probe for quick visual quantitative detection of picric acid.
    Hu JH; Zhang W; Ren CX; Xiong Y; Zhang JY; He J; Huang Y; Tao Z; Xiao X
    Anal Chim Acta; 2023 May; 1254():341095. PubMed ID: 37005021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range.
    Hariharan PS; Pitchaimani J; Madhu V; Anthony SP
    J Fluoresc; 2016 Mar; 26(2):395-401. PubMed ID: 26585348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtogram detection of explosive nitroaromatics: fluoranthene-based fluorescent chemosensors.
    Venkatramaiah N; Kumar S; Patil S
    Chemistry; 2012 Nov; 18(46):14745-51. PubMed ID: 23015532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amine Molecular Cages as Supramolecular Fluorescent Explosive Sensors: A Computational Perspective.
    Zwijnenburg MA; Berardo E; Peveler WJ; Jelfs KE
    J Phys Chem B; 2016 Jun; 120(22):5063-72. PubMed ID: 27149567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen bond directed high-fidelity optical detection of picric acid: A single driver on diverse roads towards the same destiny.
    Paul S; Paul P; Samanta S; Majumdar T; Mallick A
    Org Biomol Chem; 2023 May; 21(17):3503-3524. PubMed ID: 37067241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the combination of luminescent rare earth MOF and rhodamine dopant with two sensing channels for picric acid.
    Fan Y; Cheng X; Xue G; Wu J; Huang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():210-217. PubMed ID: 30690304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guest-Induced Ultrasensitive Detection of Multiple Toxic Organics and Fe
    Goswami R; Mandal SC; Pathak B; Neogi S
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9042-9053. PubMed ID: 30717599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene.
    Tanwar AS; Adil LR; Afroz MA; Iyer PK
    ACS Sens; 2018 Aug; 3(8):1451-1461. PubMed ID: 30039698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection.
    Xu J; Shi M; Huang H; Hu K; Chen W; Huang Y; Zhao S
    Analyst; 2018 Aug; 143(16):3918-3925. PubMed ID: 30043777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzo[ghi]perylene and coronene as ratiometric fluorescence probes for the selective sensing of nitroaromatic explosives.
    Hussain E; Li Y; Cheng C; Zhuo H; Shahzad SA; Ali S; Ismail M; Qi H; Yu C
    Talanta; 2020 Jan; 207():120316. PubMed ID: 31594608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Receptor free" inner filter effect based universal sensors for nitroexplosive picric acid using two polyfluorene derivatives in the solution and solid states.
    Tanwar AS; Patidar S; Ahirwar S; Dehingia S; Iyer PK
    Analyst; 2019 Jan; 144(2):669-676. PubMed ID: 30511061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing through signal amplification.
    Scrimin P; Prins LJ
    Chem Soc Rev; 2011 Sep; 40(9):4488-505. PubMed ID: 21584330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicomponent assembly of fluorescent-tag functionalized ligands in metal-organic frameworks for sensing explosives.
    Gole B; Bar AK; Mukherjee PS
    Chemistry; 2014 Oct; 20(41):13321-36. PubMed ID: 25164426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curcumin-cysteine and curcumin-tryptophan conjugate as fluorescence turn on sensors for picric Acid in aqueous media.
    Gogoi B; Sen Sarma N
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11195-202. PubMed ID: 25955402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes.
    Reddy KL; Kumar AM; Dhir A; Krishnan V
    J Fluoresc; 2016 Nov; 26(6):2041-2046. PubMed ID: 27539644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence based explosive detection: from mechanisms to sensory materials.
    Sun X; Wang Y; Lei Y
    Chem Soc Rev; 2015 Nov; 44(22):8019-61. PubMed ID: 26335504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles.
    Zhu H; Fan J; Du J; Peng X
    Acc Chem Res; 2016 Oct; 49(10):2115-2126. PubMed ID: 27661761
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.