These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32568352)

  • 1. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts.
    Shi Z; Wang X; Ge J; Liu C; Xing W
    Nanoscale; 2020 Jul; 12(25):13249-13275. PubMed ID: 32568352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment.
    An L; Wei C; Lu M; Liu H; Chen Y; Scherer GG; Fisher AC; Xi P; Xu ZJ; Yan CH
    Adv Mater; 2021 May; 33(20):e2006328. PubMed ID: 33768614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction.
    Li L; Wang P; Shao Q; Huang X
    Adv Mater; 2021 Dec; 33(50):e2004243. PubMed ID: 33749035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on fundamentals for designing oxygen evolution electrocatalysts.
    Song J; Wei C; Huang ZF; Liu C; Zeng L; Wang X; Xu ZJ
    Chem Soc Rev; 2020 Apr; 49(7):2196-2214. PubMed ID: 32133479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media.
    Lin Y; Dong Y; Wang X; Chen L
    Adv Mater; 2023 Jun; 35(22):e2210565. PubMed ID: 36521026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly.
    Zhou D; Li P; Lin X; McKinley A; Kuang Y; Liu W; Lin WF; Sun X; Duan X
    Chem Soc Rev; 2021 Aug; 50(15):8790-8817. PubMed ID: 34160484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media.
    Gao J; Tao H; Liu B
    Adv Mater; 2021 Aug; 33(31):e2003786. PubMed ID: 34169587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-iridium electrocatalysts for acidic oxygen evolution.
    Fan M; Liang X; Chen H; Zou X
    Dalton Trans; 2020 Nov; 49(44):15568-15573. PubMed ID: 33112324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH.
    Li P; Zhao R; Chen H; Wang H; Wei P; Huang H; Liu Q; Li T; Shi X; Zhang Y; Liu M; Sun X
    Small; 2019 Mar; 15(13):e1805103. PubMed ID: 30773809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges.
    Zhang K; Zou R
    Small; 2021 Sep; 17(37):e2100129. PubMed ID: 34114334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earth-Abundant Transition-Metal-Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen.
    Li A; Sun Y; Yao T; Han H
    Chemistry; 2018 Dec; 24(69):18334-18355. PubMed ID: 30198114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Influence of Halogen Coordination Effect of Stable Bimetallic MOFs on Oxygen Evolution Reaction.
    Lu JN; Liu J; Dong LZ; Li SL; Kan YH; Lan YQ
    Chemistry; 2019 Dec; 25(69):15830-15836. PubMed ID: 31552686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies to Develop Earth-Abundant Heterogeneous Oxygen Evolution Reaction Catalysts for pH-Neutral or pH-Near-Neutral Electrolytes.
    Dong Y; Komarneni S
    Small Methods; 2021 Jan; 5(1):e2000719. PubMed ID: 34927809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition between Lattice Oxygen and Adsorbate Evolving Mechanisms in Rutile Ru-Based Oxide for the Oxygen Evolution Reaction.
    Liu S; Chang Y; He N; Zhu S; Wang L; Liu X
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20563-20570. PubMed ID: 37040160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction.
    Gao L; Cui X; Sewell CD; Li J; Lin Z
    Chem Soc Rev; 2021 Aug; 50(15):8428-8469. PubMed ID: 34259239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation.
    Duan Y; Sun S; Sun Y; Xi S; Chi X; Zhang Q; Ren X; Wang J; Ong SJH; Du Y; Gu L; Grimaud A; Xu ZJ
    Adv Mater; 2019 Mar; 31(12):e1807898. PubMed ID: 30680800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution.
    Guo H; Fang Z; Li H; Fernandez D; Henkelman G; Humphrey SM; Yu G
    ACS Nano; 2019 Nov; 13(11):13225-13234. PubMed ID: 31668069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting.
    Fabbri E; Nachtegaal M; Binninger T; Cheng X; Kim BJ; Durst J; Bozza F; Graule T; Schäublin R; Wiles L; Pertoso M; Danilovic N; Ayers KE; Schmidt TJ
    Nat Mater; 2017 Sep; 16(9):925-931. PubMed ID: 28714982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for Promoting Catalytic Performance of Ru-Based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction.
    Chu X; Wang L; Li J; Xu H
    Chem Rec; 2023 Apr; 23(4):e202300013. PubMed ID: 36806446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.