These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 32568412)
1. Neurogenic Heterotopic Ossifications Develop Independently of Granulocyte Colony-Stimulating Factor and Neutrophils. Tseng HW; Kulina I; Salga M; Fleming W; Vaquette C; Genêt F; Levesque JP; Alexander KA J Bone Miner Res; 2020 Nov; 35(11):2242-2251. PubMed ID: 32568412 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of JAK1/2 Tyrosine Kinases Reduces Neurogenic Heterotopic Ossification After Spinal Cord Injury. Alexander KA; Tseng HW; Fleming W; Jose B; Salga M; Kulina I; Millard SM; Pettit AR; Genêt F; Levesque JP Front Immunol; 2019; 10():377. PubMed ID: 30899259 [TBL] [Abstract][Full Text] [Related]
3. Interleukin-1 Is Overexpressed in Injured Muscles Following Spinal Cord Injury and Promotes Neurogenic Heterotopic Ossification. Tseng HW; Kulina I; Girard D; Gueguen J; Vaquette C; Salga M; Fleming W; Jose B; Millard SM; Pettit AR; Schroder K; Thomas G; Wheeler L; Genêt F; Banzet S; Alexander KA; Lévesque JP J Bone Miner Res; 2022 Mar; 37(3):531-546. PubMed ID: 34841579 [TBL] [Abstract][Full Text] [Related]
4. Lymphocytes Are Not Required for Neurogenic Heterotopic Ossification Development after Spinal Cord Injury. Alexander KA; Tseng HW; Kulina I; Fleming W; Vaquette C; Genêt F; Ruitenberg MJ; Lévesque JP Neurotrauma Rep; 2022; 3(1):87-96. PubMed ID: 35317305 [TBL] [Abstract][Full Text] [Related]
5. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. Torossian F; Guerton B; Anginot A; Alexander KA; Desterke C; Soave S; Tseng HW; Arouche N; Boutin L; Kulina I; Salga M; Jose B; Pettit AR; Clay D; Rochet N; Vlachos E; Genet G; Debaud C; Denormandie P; Genet F; Sims NA; Banzet S; Levesque JP; Lataillade JJ; Le Bousse-Kerdilès MC JCI Insight; 2017 Nov; 2(21):. PubMed ID: 29093266 [TBL] [Abstract][Full Text] [Related]
6. When the Nervous System Turns Skeletal Muscles into Bones: How to Solve the Conundrum of Neurogenic Heterotopic Ossification. Alexander KA; Tseng HW; Salga M; Genêt F; Levesque JP Curr Osteoporos Rep; 2020 Dec; 18(6):666-676. PubMed ID: 33085000 [TBL] [Abstract][Full Text] [Related]
8. Neurogenic Heterotopic Ossifications Recapitulate Hematopoietic Stem Cell Niche Development Within an Adult Osteogenic Muscle Environment. Girard D; Torossian F; Oberlin E; Alexander KA; Gueguen J; Tseng HW; Genêt F; Lataillade JJ; Salga M; Levesque JP; Le Bousse-Kerdilès MC; Banzet S Front Cell Dev Biol; 2021; 9():611842. PubMed ID: 33748104 [TBL] [Abstract][Full Text] [Related]
9. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay. Watanabe M; Fukamachi H; Uzumaki H; Kabaya K; Tsumura H; Ishikawa M; Matsuki S; Kusaka M Anal Biochem; 1991 May; 195(1):38-44. PubMed ID: 1716070 [TBL] [Abstract][Full Text] [Related]
10. Effect of recombinant human granulocyte colony-stimulating factor administration in normal and experimentally infected newborn rats. Iguchi K; Inoue S; Kumar A Exp Hematol; 1991 Jun; 19(5):352-8. PubMed ID: 1709109 [TBL] [Abstract][Full Text] [Related]
11. Granulocyte kinetics in neutrophilia induced by recombinant human granulocyte colony-stimulating factor in mice. Yamagiwa A Fukushima J Med Sci; 1991 Jun; 37(1):1-11. PubMed ID: 1725671 [TBL] [Abstract][Full Text] [Related]
12. Comparison of neutrophil and monocyte function by microbicidal cell-kill assay in patients with cancer receiving granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, or no cytokine after cytotoxic chemotherapy: a phase II trial. Nemunaitis J; Cox J; Meyer W; Courtney A; Hanson T; Green-Weaver C; Agosti J Am J Clin Oncol; 1998 Jun; 21(3):308-12. PubMed ID: 9626806 [TBL] [Abstract][Full Text] [Related]
13. A randomized, placebo-controlled trial of recombinant human granulocyte colony-stimulating factor administration in newborn infants with presumed sepsis: significant induction of peripheral and bone marrow neutrophilia. Gillan ER; Christensen RD; Suen Y; Ellis R; van de Ven C; Cairo MS Blood; 1994 Sep; 84(5):1427-33. PubMed ID: 7520770 [TBL] [Abstract][Full Text] [Related]
14. [Effects of HS 6101 and rhG-CSF on Hematopoiesis Recovery of ICR Mice Injured by Cyclophosphamide]. Xiong GL; Shen X; Liu XL; Yang M; Dai CL; Liu XY; Xing S; Yu ZY Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2015 Dec; 23(6):1716-20. PubMed ID: 26708899 [TBL] [Abstract][Full Text] [Related]
15. Effect of recombinant human granulocyte colony-stimulating factor on hematopoiesis in normal cats. Fulton R; Gasper PW; Ogilvie GK; Boone TC; Dornsife RE Exp Hematol; 1991 Sep; 19(8):759-67. PubMed ID: 1714401 [TBL] [Abstract][Full Text] [Related]
16. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats. Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652 [TBL] [Abstract][Full Text] [Related]
17. Quantitative and cell-cycle differences in progenitor cells mobilized by recombinant human interleukin-7 and recombinant human granulocyte colony-stimulating factor. Grzegorzewski KJ; Komschlies KL; Franco JL; Ruscetti FW; Keller JR; Wiltrout RH Blood; 1996 Dec; 88(11):4139-48. PubMed ID: 8943848 [TBL] [Abstract][Full Text] [Related]
18. Timing of recombinant human granulocyte colony-stimulating factor administration on neutropenia induced by cyclophosphamide in normal mice. Misaki M; Ueyama Y; Tsukamoto G; Matsumura T Br J Cancer; 1998 Mar; 77(6):884-9. PubMed ID: 9528829 [TBL] [Abstract][Full Text] [Related]
19. Granulocyte-colony stimulating factor administration for neurological improvement in patients with postrehabilitation chronic incomplete traumatic spinal cord injuries: a double-blind randomized controlled clinical trial. Derakhshanrad N; Saberi H; Yekaninejad MS; Joghataei MT; Sheikhrezaei A J Neurosurg Spine; 2018 Jul; 29(1):97-107. PubMed ID: 29701561 [TBL] [Abstract][Full Text] [Related]
20. Clonal growth of functionally normal and deficient neutrophils from the bone marrow of a patient with variant chronic granulomatous disease. Lack of reconstitution of oxidative burst defect by G-CSF, GM-CSF, and IFN-gamma in vitro. Oez S; Birkmann J; Kalden JR Ann Hematol; 1993 Jan; 66(1):21-5. PubMed ID: 7679293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]