BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 32568692)

  • 1. Electrochemical (bio) sensors go green.
    Kalambate PK; Rao Z; Dhanjai ; Wu J; Shen Y; Boddula R; Huang Y
    Biosens Bioelectron; 2020 Sep; 163():112270. PubMed ID: 32568692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on Electrochemical and Optical Sensing Platform Based on Ionic Liquids for Different Molecules Determination.
    Unal DN; Sadak S; Uslu B
    Crit Rev Anal Chem; 2023; 53(4):798-824. PubMed ID: 34632874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic nanomaterials based electrochemical (bio)sensors for food analysis.
    Garkani Nejad F; Tajik S; Beitollahi H; Sheikhshoaie I
    Talanta; 2021 Jun; 228():122075. PubMed ID: 33773704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic liquids as green solvents and electrolytes for robust chemical sensor development.
    Rehman A; Zeng X
    Acc Chem Res; 2012 Oct; 45(10):1667-77. PubMed ID: 22891895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review.
    Falina S; Anuar K; Shafiee SA; Juan JC; Manaf AA; Kawarada H; Syamsul M
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical impedimetric biosensors, featuring the use of Room Temperature Ionic Liquids (RTILs): Special focus on non-faradaic sensing.
    Upasham S; Banga IK; Jagannath B; Paul A; Lin KC; Muthukumar S; Prasad S
    Biosens Bioelectron; 2021 Apr; 177():112940. PubMed ID: 33444897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailor-designed deep eutectic liquids as a sustainable extraction media: An alternative to ionic liquids.
    Şahin S
    J Pharm Biomed Anal; 2019 Sep; 174():324-329. PubMed ID: 31195320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors.
    Ramya M; Senthil Kumar P; Rangasamy G; Uma Shankar V; Rajesh G; Nirmala K; Saravanan A; Krishnapandi A
    Chemosphere; 2022 Dec; 308(Pt 2):136416. PubMed ID: 36099991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review.
    Lahcen AA; Rauf S; Beduk T; Durmus C; Aljedaibi A; Timur S; Alshareef HN; Amine A; Wolfbeis OS; Salama KN
    Biosens Bioelectron; 2020 Nov; 168():112565. PubMed ID: 32927277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock.
    New EK; Tnah SK; Voon KS; Yong KJ; Procentese A; Yee Shak KP; Subramonian W; Cheng CK; Wu TY
    J Environ Manage; 2022 Apr; 307():114385. PubMed ID: 35104699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices.
    Rizwan K; Rahdar A; Bilal M; Iqbal HMN
    Chemosphere; 2022 Mar; 291(Pt 1):132820. PubMed ID: 34762881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds.
    Qian L; Durairaj S; Prins S; Chen A
    Biosens Bioelectron; 2021 Mar; 175():112836. PubMed ID: 33272868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.
    Lu L
    Biosens Bioelectron; 2018 Jul; 110():180-192. PubMed ID: 29614439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors.
    Beitollahi H; Tajik S; Garkani Nejad F; Safaei M
    J Mater Chem B; 2020 Jul; 8(27):5826-5844. PubMed ID: 32542277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design.
    Arduini F; Cinti S; Mazzaracchio V; Scognamiglio V; Amine A; Moscone D
    Biosens Bioelectron; 2020 May; 156():112033. PubMed ID: 32174547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on the Role and Performance of Cellulose Nanomaterials in Sensors.
    Teodoro KBR; Sanfelice RC; Migliorini FL; Pavinatto A; Facure MHM; Correa DS
    ACS Sens; 2021 Jul; 6(7):2473-2496. PubMed ID: 34182751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of Ionic Liquids for the Development of Optical Chemical Sensors and Biosensors.
    Muginova SV; Myasnikova DA; Kazarian SG; Shekhovtsova TN
    Anal Sci; 2017; 33(3):261-274. PubMed ID: 28302965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.
    Adhikari BR; Govindhan M; Chen A
    Sensors (Basel); 2015 Sep; 15(9):22490-508. PubMed ID: 26404304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tackling the challenges of developing microneedle-based electrochemical sensors.
    Abdullah H; Phairatana T; Jeerapan I
    Mikrochim Acta; 2022 Nov; 189(11):440. PubMed ID: 36329339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends in Paper-based Electrochemical Biosensors: From Design to Application.
    Lee VBC; Mohd-Naim NF; Tamiya E; Ahmed MU
    Anal Sci; 2018; 34(1):7-18. PubMed ID: 29321461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.