These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32569311)

  • 1. Combined model-free and model-sensitive reinforcement learning in non-human primates.
    Miranda B; Malalasekera WMN; Behrens TE; Dayan P; Kennerley SW
    PLoS Comput Biol; 2020 Jun; 16(6):e1007944. PubMed ID: 32569311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human subjects exploit a cognitive map for credit assignment.
    Moran R; Dayan P; Dolan RJ
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33479182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive coordination of working-memory and reinforcement learning in non-human primates performing a trial-and-error problem solving task.
    Viejo G; Girard B; Procyk E; Khamassi M
    Behav Brain Res; 2018 Dec; 355():76-89. PubMed ID: 29061387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.
    Huh N; Jo S; Kim H; Sul JH; Jung MW
    Learn Mem; 2009 May; 16(5):315-23. PubMed ID: 19403794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine enhances model-free credit assignment through boosting of retrospective model-based inference.
    Deserno L; Moran R; Michely J; Lee Y; Dayan P; Dolan RJ
    Elife; 2021 Dec; 10():. PubMed ID: 34882092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.
    Rothenhoefer KM; Costa VD; Bartolo R; Vicario-Feliciano R; Murray EA; Averbeck BB
    J Neurosci; 2017 Jul; 37(29):6902-6914. PubMed ID: 28626011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model based planners reflect on their model-free propensities.
    Moran R; Keramati M; Dolan RJ
    PLoS Comput Biol; 2021 Jan; 17(1):e1008552. PubMed ID: 33411724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-Free RL or Action Sequences?
    Morris A; Cushman F
    Front Psychol; 2019; 10():2892. PubMed ID: 31920900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex.
    Lee D; Seo H
    Ann N Y Acad Sci; 2007 May; 1104():108-22. PubMed ID: 17347332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning and decision making in monkeys during a competitive game.
    Lee D; Conroy ML; McGreevy BP; Barraclough DJ
    Brain Res Cogn Brain Res; 2004 Dec; 22(1):45-58. PubMed ID: 15561500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
    Khamassi M; Enel P; Dominey PF; Procyk E
    Prog Brain Res; 2013; 202():441-64. PubMed ID: 23317844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms.
    Sebold M; Garbusow M; Jetzschmann P; Schad DJ; Nebe S; Schlagenhauf F; Heinz A; Rapp M; Romanczuk-Seiferth N
    Psychopharmacology (Berl); 2019 Aug; 236(8):2437-2449. PubMed ID: 31254091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.
    Gershman SJ; Daw ND
    Annu Rev Psychol; 2017 Jan; 68():101-128. PubMed ID: 27618944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning.
    Ziegler S; Pedersen ML; Mowinckel AM; Biele G
    Neurosci Biobehav Rev; 2016 Dec; 71():633-656. PubMed ID: 27608958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning.
    Frank MJ; Gagne C; Nyhus E; Masters S; Wiecki TV; Cavanagh JF; Badre D
    J Neurosci; 2015 Jan; 35(2):485-94. PubMed ID: 25589744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A frontal dopamine system for reflective exploratory behavior.
    Blanco NJ; Love BC; Cooper JA; McGeary JE; Knopik VS; Maddox WT
    Neurobiol Learn Mem; 2015 Sep; 123():84-91. PubMed ID: 26004676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No substantial change in the balance between model-free and model-based control via training on the two-step task.
    Grosskurth ED; Bach DR; Economides M; Huys QJM; Holper L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007443. PubMed ID: 31725719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How pupil responses track value-based decision-making during and after reinforcement learning.
    Van Slooten JC; Jahfari S; Knapen T; Theeuwes J
    PLoS Comput Biol; 2018 Nov; 14(11):e1006632. PubMed ID: 30500813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.
    Zendehrouh S
    Neural Netw; 2015 Nov; 71():112-23. PubMed ID: 26339919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.