These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32569311)

  • 21. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurochemical and Behavioral Dissections of Decision-Making in a Rodent Multistage Task.
    Groman SM; Massi B; Mathias SR; Curry DW; Lee D; Taylor JR
    J Neurosci; 2019 Jan; 39(2):295-306. PubMed ID: 30413646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis.
    Strauss GP; Thaler NS; Matveeva TM; Vogel SJ; Sutton GP; Lee BG; Allen DN
    J Abnorm Psychol; 2015 Aug; 124(3):697-708. PubMed ID: 25894442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.
    Collins AGE; Albrecht MA; Waltz JA; Gold JM; Frank MJ
    Biol Psychiatry; 2017 Sep; 82(6):431-439. PubMed ID: 28651789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors.
    Parvin DE; McDougle SD; Taylor JA; Ivry RB
    J Neurosci; 2018 May; 38(19):4521-4530. PubMed ID: 29650698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Credit assignment in movement-dependent reinforcement learning.
    McDougle SD; Boggess MJ; Crossley MJ; Parvin D; Ivry RB; Taylor JA
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6797-802. PubMed ID: 27247404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model-Free and Model-Based Influences in Addiction-Related Behaviors.
    Groman SM; Massi B; Mathias SR; Lee D; Taylor JR
    Biol Psychiatry; 2019 Jun; 85(11):936-945. PubMed ID: 30737015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning.
    Decker JH; Otto AR; Daw ND; Hartley CA
    Psychol Sci; 2016 Jun; 27(6):848-58. PubMed ID: 27084852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Mathematical models of decision making and learning].
    Ito M; Doya K
    Brain Nerve; 2008 Jul; 60(7):791-8. PubMed ID: 18646619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning.
    Konovalov A; Krajbich I
    Nat Commun; 2016 Aug; 7():12438. PubMed ID: 27511383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reinforcement learning and human behavior.
    Shteingart H; Loewenstein Y
    Curr Opin Neurobiol; 2014 Apr; 25():93-8. PubMed ID: 24709606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explicit and implicit reinforcement learning across the psychosis spectrum.
    Barch DM; Carter CS; Gold JM; Johnson SL; Kring AM; MacDonald AW; Pizzagalli DA; Ragland JD; Silverstein SM; Strauss ME
    J Abnorm Psychol; 2017 Jul; 126(5):694-711. PubMed ID: 28406662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning and decision making in monkeys during a rock-paper-scissors game.
    Lee D; McGreevy BP; Barraclough DJ
    Brain Res Cogn Brain Res; 2005 Oct; 25(2):416-30. PubMed ID: 16095886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Working Memory Load Strengthens Reward Prediction Errors.
    Collins AGE; Ciullo B; Frank MJ; Badre D
    J Neurosci; 2017 Apr; 37(16):4332-4342. PubMed ID: 28320846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Congruence of Inherent and Acquired Values Facilitates Reward-Based Decision-Making.
    Chien S; Wiehler A; Spezio M; Gläscher J
    J Neurosci; 2016 May; 36(18):5003-12. PubMed ID: 27147653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning and forgetting using reinforced Bayesian change detection.
    Moens V; Zénon A
    PLoS Comput Biol; 2019 Apr; 15(4):e1006713. PubMed ID: 30995214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of prefrontal meta control in human-like reinforcement learning.
    Lee JH; Leibo JZ; An SJ; Lee SW
    Front Comput Neurosci; 2022; 16():1060101. PubMed ID: 36618272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How the Level of Reward Awareness Changes the Computational and Electrophysiological Signatures of Reinforcement Learning.
    Correa CMC; Noorman S; Jiang J; Palminteri S; Cohen MX; Lebreton M; van Gaal S
    J Neurosci; 2018 Nov; 38(48):10338-10348. PubMed ID: 30327418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Choice Type Impacts Human Reinforcement Learning.
    Rmus M; Zou A; Collins AGE
    J Cogn Neurosci; 2022 Nov; ():1-17. PubMed ID: 36473098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.