These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32569430)

  • 1. Advances in Osteometric Sorting: Utilizing Diaphyseal CSG Properties for Lower Limb Skeletal Pair-Matching.
    Bertsatos A; Chovalopoulou ME
    J Forensic Sci; 2020 Sep; 65(5):1400-1405. PubMed ID: 32569430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Reliable Regression-Based Approach for Reassociating Human Skeletal Elements of the Lower Limbs from Commingled Assemblages.
    Anastopoulou I; Karakostis FA; Moraitis K
    J Forensic Sci; 2019 Mar; 64(2):502-506. PubMed ID: 30102760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Geometry of Phalanges as a Proxy for Pair-Matching: Mesh Comparison Using an ICP Algorithm.
    Tsiminikaki K; Karell MA; Nathena D; Halazonetis D; Spanakis K; Kranioti EF
    Adv Exp Med Biol; 2019; 1205():55-69. PubMed ID: 31894569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Power of Exclusion using Automated Osteometric Sorting: Pair-Matching.
    Lynch JJ; Byrd J; LeGarde CB
    J Forensic Sci; 2018 Mar; 63(2):371-380. PubMed ID: 28547802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteometric sorting of skeletal elements from a sample of modern Colombians: a pilot study.
    Rodríguez JM; Hackman L; Martínez W; Medina CS
    Int J Legal Med; 2016 Mar; 130(2):541-50. PubMed ID: 25588668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-generation osteometric sorting: Using 3D shape, elliptical Fourier analysis, and Hausdorff distance to optimize osteological pair-matching.
    Fancourt HSM; Lynch JJ; Byrd JE; Stephan CN
    J Forensic Sci; 2021 May; 66(3):821-836. PubMed ID: 33550609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical note: Development of regression equations to reassociate upper limb bones from commingled contexts.
    Anastopoulou I; Karakostis FA; Eliopoulos C; Moraitis K
    Forensic Sci Int; 2020 Oct; 315():110439. PubMed ID: 32823079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteometric sorting of commingled human remains.
    Byrd JE; Adams BJ
    J Forensic Sci; 2003 Jul; 48(4):717-24. PubMed ID: 12877285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate and semi-automated reassociation of intermixed human skeletal remains recovered from bioarchaeological and forensic contexts.
    Anastopoulou I; Karakostis FA; Harvati K; Moraitis K
    Sci Rep; 2021 Oct; 11(1):20273. PubMed ID: 34642444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Automation of Regression Modeling in Osteometric Sorting: An Ordination Approach.
    Lynch JJ
    J Forensic Sci; 2018 May; 63(3):798-804. PubMed ID: 28731575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison.
    Karell MA; Langstaff HK; Halazonetis DJ; Minghetti C; Frelat M; Kranioti EF
    Int J Legal Med; 2016 Sep; 130(5):1315-22. PubMed ID: 26966098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposed method for predicting pair matching of skeletal elements allows too many false rejections.
    Vickers S; Lubinski PM; Henebry DeLeon L; Bowen JT
    J Forensic Sci; 2015 Jan; 60(1):102-6. PubMed ID: 25069587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tables for the metric evaluation of pair-matching of human skeletal elements.
    Thomas RM; Ubelaker DH; Byrd JE
    J Forensic Sci; 2013 Jul; 58(4):952-6. PubMed ID: 23682771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for analyzing long bone diaphyseal cross-sectional geometry. A GNU Octave CSG Toolkit.
    Bertsatos A; Chovalopoulou ME
    Forensic Sci Int; 2019 Apr; 297():65-71. PubMed ID: 30776779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method to pair-match metacarpals using bilateral asymmetry and shape analysis.
    Garrido-Varas C; Rathnasinghe R; Thompson T; Savriama Y
    J Forensic Sci; 2015 Jan; 60(1):118-23. PubMed ID: 25056421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Statistical Method for Reassociating Human Tali and Calcanei from a Commingled Context.
    Anastopoulou I; Karakostis FA; Borrini M; Moraitis K
    J Forensic Sci; 2018 Mar; 63(2):381-385. PubMed ID: 28568076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Automated Two-dimensional Pairwise form Registration Method for Pair-matching of Fragmented Skeletal Remains.
    Lynch JJ
    J Forensic Sci; 2018 Nov; 63(6):1790-1795. PubMed ID: 29637565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pair-Matching Digital 3D Models of Temporomandibular Fragments Using Mesh-To-Mesh Value Comparison and Implications for Commingled Human Remain Assemblages.
    Acuff AS; Karell MA; Spanakis KE; Kranioti EF
    Adv Exp Med Biol; 2021; 1317():1-16. PubMed ID: 33945129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Analysis on the Choice of Alpha Level in the Osteometric Pair-matching of the Os Coxa, Scapula, and Clavicle.
    Lynch JJ
    J Forensic Sci; 2018 May; 63(3):793-797. PubMed ID: 28718882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancements in sex estimation using the diaphyseal cross-sectional geometric properties of the lower and upper limbs.
    Bertsatos A; Garoufi N; Chovalopoulou ME
    Int J Legal Med; 2021 May; 135(3):1035-1046. PubMed ID: 33029676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.